Question Number 35471 by tanmay.chaudhury50@gmail.com last updated on 19/May/18 $$\int_{{a}} ^{{b}} {f}\left({x}\right){dx}={area}\:{under}\:{the}\:{curve}\:{but}\:{say}\:{why} \\ $$$${what}\:{is}\:{the}\:{meaning}\:{of}\:\int\:\leftarrow{this}\:{sign} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 35456 by math1967 last updated on 19/May/18 $$\int\frac{{dx}}{{x}\left({x}^{\mathrm{2018}} +\mathrm{1}\right)} \\ $$ Answered by ajfour last updated on 19/May/18 $${I}=−\frac{\mathrm{1}}{\mathrm{2018}}\int\:\frac{−\mathrm{2018}{x}^{−\mathrm{19}} {dx}}{\mathrm{1}+{x}^{−\mathrm{2018}} } \\ $$$$\:\:=−\frac{\mathrm{1}}{\mathrm{2018}}\mathrm{ln}\:\mid\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2018}}…
Question Number 35440 by prof Abdo imad last updated on 19/May/18 $${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dx}}{\left(\mathrm{2}{x}^{\mathrm{2}} \:\:+\mathrm{1}\right)^{\mathrm{2}} } \\ $$ Commented by prof Abdo imad last updated…
Question Number 35438 by prof Abdo imad last updated on 19/May/18 $${let}\:{m}>\mathrm{0}\:{and}\:\mathrm{0}<{a}<{b}\: \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\:\frac{{cos}\left({mx}\right)}{\left({x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} \right)\left({x}^{\mathrm{2}} \:+{b}^{\mathrm{2}} \right)}{dx} \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{cos}\left(\mathrm{2}{x}\right)}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}^{\mathrm{2}}…
Question Number 100969 by mathmax by abdo last updated on 29/Jun/20 $$\mathrm{find}\:\int_{−\infty} ^{\infty} \:\:\frac{\mathrm{sin}\left(\mathrm{cosx}\right)}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }\mathrm{dx} \\ $$ Answered by mathmax by abdo last updated…
Question Number 100967 by mathmax by abdo last updated on 29/Jun/20 $$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\mathrm{2}+\:\mathrm{sin}\theta\right)\mathrm{d}\theta \\ $$ Answered by mathmax by abdo last updated on 01/Jul/20…
Question Number 100965 by mathmax by abdo last updated on 29/Jun/20 $$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\pi} \mathrm{ln}\left(\mathrm{x}^{\mathrm{2}} −\mathrm{2xcos}\theta\:+\mathrm{1}\right)\mathrm{d}\theta\:\:\:\:\left(\mathrm{x}\:\mathrm{real}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 35429 by abdo.msup.com last updated on 18/May/18 $${find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{\mathrm{2}{x}−\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}} \:\:+\mathrm{6}}}\:{dx} \\ $$ Commented by prof Abdo imad last updated on 19/May/18 $${let}\:{put}\:{I}\:=\:\int_{\mathrm{0}}…
Question Number 35427 by abdo.msup.com last updated on 18/May/18 $${calculate}\:\:\:\int_{\mathrm{2}} ^{\mathrm{5}} \:\:\:\frac{{e}^{\sqrt{{x}+\mathrm{1}}} }{\:\sqrt{{x}+\mathrm{1}}}{dx} \\ $$ Commented by prof Abdo imad last updated on 19/May/18 $${changement}\:\sqrt{{x}+\mathrm{1}}={t}\:{give}\:{x}={t}^{\mathrm{2}}…
Question Number 35428 by abdo.msup.com last updated on 18/May/18 $${find}\:\:\:\:\:\int\:\:\:\:\frac{{x}+\mathrm{3}}{\:\sqrt{{x}^{\mathrm{2}} \:+{x}\:−\mathrm{1}}}{dx} \\ $$ Commented by prof Abdo imad last updated on 19/May/18 $${let}\:{put}\:\:{I}\:\:=\:\int\:\:\:\:\:\:\frac{{x}+\mathrm{3}}{\:\sqrt{{x}^{\mathrm{2}} \:+{x}−\mathrm{1}}}{dx} \\…