Menu Close

Category: Integration

prove-0-1-ln-2-1-x-2-x-2-dx-pi-2-3-4ln-2-2-solution-technical-method-0-1-ln-2-1-x-2-d-1-1-x-

Question Number 166373 by mnjuly1970 last updated on 19/Feb/22 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{prove}\:\: \\ $$$$\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{ln}^{\:\mathrm{2}} \left(\mathrm{1}−{x}^{\:\mathrm{2}} \right)\:}{{x}^{\:\mathrm{2}} }\:{dx}\:=\frac{\pi^{\:\mathrm{2}} }{\mathrm{3}}\:−\mathrm{4}{ln}^{\:\mathrm{2}} \left(\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:−−−\:\:{solution}\:\left({technical}\:{method}\right)\:−−− \\ $$$$\:\:\:\:\boldsymbol{\phi}=\:\int_{\mathrm{0}}…

hello-every-one-prove-that-0-pi-2-cos-u-x-cos-ax-arctan-b-cos-x-dx-2-u-2-pi-b-u-2-u-a-3-2-u-a-3-2-x-4-F-3-1-2-1-u-2-u-3-2-b-2-3-2-u-a-3-2-

Question Number 100829 by  M±th+et+s last updated on 28/Jun/20 $${hello}\:{every}\:{one}\: \\ $$$$ \\ $$$${prove}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {cos}^{{u}} \left({x}\right)\:{cos}\left({ax}\right)\:{arctan}\left({b}\:{cos}\left({x}\right)\right)\:{dx} \\ $$$$=\frac{\mathrm{2}^{−{u}−\mathrm{2}} .\pi.{b}.\Gamma\left({u}+\mathrm{2}\right)}{\Gamma\left(\frac{{u}−{a}+\mathrm{3}}{\mathrm{2}}\right)\Gamma\left(\frac{{u}+{a}+\mathrm{3}}{\mathrm{2}}\right)}.{x}_{\mathrm{4}} {F}_{\mathrm{3}} \begin{pmatrix}{\frac{\mathrm{1}}{\mathrm{2}},\mathrm{1}+\frac{{u}}{\mathrm{2}},\frac{{u}+\mathrm{3}}{\mathrm{2}},−{b}^{\mathrm{2}} }\\{\frac{\mathrm{3}}{\mathrm{2}},\frac{{u}−{a}+\mathrm{3}}{\mathrm{2}},\frac{{u}+{a}+\mathrm{3}}{\mathrm{2}}}\end{pmatrix}…

Question-35294

Question Number 35294 by ajfour last updated on 17/May/18 Commented by ajfour last updated on 17/May/18 $${Find}\:{moment}\:{of}\:{inertia}\:{of}\:{a} \\ $$$${square}\:{plate}\:{if}\:{its}\:{density}\:{at}\:{a} \\ $$$${point}\:\left({say}\:{P}\right)\:{is}\:{proportional}\:{to}\:{the} \\ $$$${distance}\:{of}\:{that}\:{point}\:{from} \\ $$$${vertex}\:{A}.…

dx-tan-2-x-sin-2-x-

Question Number 166320 by bobhans last updated on 18/Feb/22 $$\:\:\int\:\frac{\mathrm{dx}}{\mathrm{tan}\:^{\mathrm{2}} \mathrm{x}+\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}}\:=? \\ $$ Answered by cortano1 last updated on 18/Feb/22 $$\:\mathrm{Y}=\int\:\frac{\mathrm{dx}}{\mathrm{tan}\:^{\mathrm{2}} \mathrm{x}+\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}}\:=? \\…