Menu Close

Category: Integration

find-the-area-bounded-inner-the-curve-r-4-2cos-and-outer-the-curve-r-6-2cos-

Question Number 102369 by bobhans last updated on 08/Jul/20 $${find}\:{the}\:{area}\:{bounded}\:{inner}\:{the}\:{curve} \\ $$$${r}\:=\:\mathrm{4}−\mathrm{2cos}\:\theta\:{and}\:{outer}\:{the}\:{curve}\:{r}\:=\:\mathrm{6}+\mathrm{2cos}\:\theta \\ $$ Answered by Ar Brandon last updated on 08/Jul/20 $$\mathrm{Area}\:,\:\mathrm{A}=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \int_{\mathrm{4}−\mathrm{2cos}\theta}…

sin-x-cos-2-x-cos-2x-dx-

Question Number 36811 by rahul 19 last updated on 05/Jun/18 $$\int\:\frac{\mathrm{sin}\:{x}}{\mathrm{cos}\:^{\mathrm{2}} {x}.\:\sqrt{\mathrm{cos}\:\mathrm{2}{x}}}\:{dx}=\:? \\ $$ Answered by MJS last updated on 05/Jun/18 $$\int\frac{\mathrm{sin}\:{x}}{\mathrm{cos}^{\mathrm{2}} \:{x}\:\sqrt{\mathrm{cos}\:\mathrm{2}{x}}}{dx}=\int\frac{\mathrm{sin}\:{x}}{\mathrm{cos}^{\mathrm{2}} \:{x}\:\sqrt{\mathrm{cos}^{\mathrm{2}} \:{x}\:−\mathrm{sin}^{\mathrm{2}}…

xdx-1-x-2-1-x-2-

Question Number 102341 by Ar Brandon last updated on 08/Jul/20 $$\int\frac{\mathrm{xdx}}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }} \\ $$ Answered by bemath last updated on 08/Jul/20 $${set}\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:=\:{p}\:\Rightarrow{x}^{\mathrm{2}} =\mathrm{1}−{p}^{\mathrm{2}}…

1-x-4-1-x-4-3-2-dx-A-A-B-Find-B-Assume-integration-of-constant-0-

Question Number 36801 by rahul 19 last updated on 05/Jun/18 $$\int\:\frac{\mathrm{1}+{x}^{\mathrm{4}} }{\left(\mathrm{1}−{x}^{\mathrm{4}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} }\:{dx}\:=\:{A}\: \\ $$$$\int\:\mathrm{A}\:=\:\mathrm{B} \\ $$$$\mathrm{Find}\:\mathrm{B}\:? \\ $$$$\mathrm{Assume}\:\mathrm{integration}\:\mathrm{of}\:\mathrm{constant}=\mathrm{0}. \\ $$ Answered by MJS…

Do-this-integration-please-do-it-step-by-step-and-write-the-used-formula-1-2-sin-x-e-sin-x-dx-

Question Number 102330 by Learner101 last updated on 08/Jul/20 $${Do}\:{this}\:{integration}\left({please}\:{do}\:{it}\:{step}\:{by}\:{step}\:{and}\:{write}\:{the}\:{used}\:{formula}\right) \\ $$$$\int\frac{\mathrm{1}}{\mathrm{2}}\left({sin}\:{x}\right)\left({e}^{{sin}\:{x}} \right){dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Nice-integral-0-1-ln-3-1-x-2-1-x-2-dx-by-MATH-AMIN-

Question Number 167862 by amin96 last updated on 27/Mar/22 $$\blacksquare\boldsymbol{\mathrm{Nice}}\:\boldsymbol{\mathrm{integral}}\blacksquare \\ $$$$\boldsymbol{\Omega}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{\mathrm{ln}}^{\mathrm{3}} \left(\mathrm{1}−\boldsymbol{\mathrm{x}}^{\mathrm{2}} \right)}{\:\sqrt{\mathrm{1}−\boldsymbol{\mathrm{x}}^{\mathrm{2}} }}\boldsymbol{\mathrm{dx}}\:\:\:? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{by}}\:\boldsymbol{\mathrm{MATH}}.\boldsymbol{\mathrm{AMIN}} \\ $$ Answered by lapache last…

Question-102313

Question Number 102313 by bemath last updated on 08/Jul/20 Answered by 1549442205 last updated on 08/Jul/20 $$\mathrm{The}\:\mathrm{abscissa}\:\:\mathrm{of}\:\:\mathrm{intersection}\:\mathrm{point}\:\mathrm{of}\:\mathrm{the}\:\mathrm{curve}\: \\ $$$$\mathrm{y}=\frac{\mathrm{4}}{\:\sqrt{\mathrm{x}}}−\frac{\mathrm{4}}{\mathrm{x}}\:\mathrm{and}\:\mathrm{x}−\mathrm{axis}\:\:\mathrm{being}\:\mathrm{the}\:\mathrm{root}\:\mathrm{of}\:\mathrm{the}\:\mathrm{eqs}.\frac{\mathrm{4}}{\:\sqrt{\mathrm{x}}}−\frac{\mathrm{4}}{\mathrm{x}}=\mathrm{0} \\ $$$$\Leftrightarrow\mathrm{x}−\sqrt{\mathrm{x}}=\mathrm{0}\left(\mathrm{x}\neq\mathrm{0}\right)\Leftrightarrow\mathrm{x}=\mathrm{1}.\mathrm{Hence}, \\ $$$$\mathrm{S}=\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{e}^{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{x}}…