Menu Close

Category: Integration

sin-2x-sin-3-x-cos-3-x-dx-

Question Number 196037 by cortano12 last updated on 16/Aug/23 $$\:\:\:\int\:\frac{\mathrm{sin}\:\mathrm{2x}}{\mathrm{sin}\:^{\mathrm{3}} \mathrm{x}+\mathrm{cos}\:^{\mathrm{3}} \mathrm{x}}\:\mathrm{dx}\:=? \\ $$ Answered by Frix last updated on 16/Aug/23 $$\mathrm{Use}\:{t}=\mathrm{sin}\:\left({x}−\frac{\pi}{\mathrm{4}}\right)\:\Rightarrow\:{dx}=\frac{{dt}}{\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}\:\mathrm{to}\:\mathrm{get} \\ $$$$\sqrt{\mathrm{2}}\int\frac{\mathrm{2}{t}^{\mathrm{2}}…

quel-est-la-transformer-de-Fourier-de-la-fonction-suivante-f-x-e-x-2-2-Find-the-Fourier-transform-of-the-following-fonction-

Question Number 196013 by pticantor last updated on 15/Aug/23 $${quel}\:{est}\:{la}\:{transformer}\:{de}\:{Fourier}\:{de}\:{la}\:{fonction} \\ $$$${suivante}: \\ $$$${f}\left({x}\right)=\boldsymbol{{e}}^{−\frac{\boldsymbol{{x}}^{\mathrm{2}} }{\mathrm{2}}} \\ $$$$\boldsymbol{{F}}{ind}\:{the}\:{Fourier}\:{transform}\:{of}\:{the}\: \\ $$$${following}\:{fonction}. \\ $$ Answered by witcher3 last…

x-y-z-x-2-y-2-1-x-0-0-lt-z-lt-y-1-calculer-I-xyzdxdydz-please-i-need-help-

Question Number 195995 by pticantor last updated on 15/Aug/23 $$\Delta=\left\{\left(\bar {{x}}\:{y}\:{z}\right),\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \leqslant\mathrm{1},\:{x}\geqslant\mathrm{0},\mathrm{0}<{z}<{y}+\mathrm{1}\right\} \\ $$$${calculer}\:\boldsymbol{{I}}=\int\int\int_{\Delta} {xyzdxdydz} \\ $$$${please}\:{i}\:{need}\:{help} \\ $$ Answered by aleks041103 last updated…

Question-195910

Question Number 195910 by Calculusboy last updated on 13/Aug/23 Answered by witcher3 last updated on 20/Aug/23 $$\mathrm{Methode}\:\mathrm{of}\:\mathrm{differentiation}\:? \\ $$$$\mathrm{A}=\mathrm{ln}\left(\mathrm{2}\right)\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}{\mathrm{ln}\left(\mathrm{x}\right)}\mathrm{dx} \\ $$$$\mathrm{A}\left(\mathrm{a}\right)=\mathrm{ln}\left(\mathrm{2}\right)\int_{\mathrm{0}} ^{\mathrm{1}}…

1-0-pi-2-x-2-sin-2-x-dx-1-2-2-0-pi-2-x-tan-x-

Question Number 195846 by mnjuly1970 last updated on 11/Aug/23 $$ \\ $$$$\:\:\:\:\:\:\begin{cases}{\:\:\:\Omega_{\mathrm{1}} \:=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{\:{x}^{\:\mathrm{2}} }{{sin}^{\:\mathrm{2}} \left({x}\right)}\:{dx}\:}\\{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\:\:\:\frac{\Omega_{\mathrm{1}} }{\Omega_{\:\mathrm{2}} }\:=\:?\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}\\{\:\:\Omega_{\:\mathrm{2}} =\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{{x}}{{tan}\left({x}\right)}\:{dx}}\end{cases} \\ $$$$ \\…