Menu Close

Category: Integration

1-d-1-sin-2-2-2-d-1-cos-2-2-3-d-1-sin-2-1-cos-2-

Question Number 36738 by MJS last updated on 04/Jun/18 $$\left(\mathrm{1}\right)\:\:\:\:\:\int\frac{{d}\alpha}{\left(\mathrm{1}+\mathrm{sin}\:\mathrm{2}\alpha\right)^{\mathrm{2}} }= \\ $$$$\left(\mathrm{2}\right)\:\:\:\:\:\int\frac{{d}\beta}{\left(\mathrm{1}+\mathrm{cos}\:\mathrm{2}\beta\right)^{\mathrm{2}} }= \\ $$$$\left(\mathrm{3}\right)\:\:\:\:\:\int\frac{{d}\gamma}{\left(\mathrm{1}+\mathrm{sin}\:\mathrm{2}\gamma\right)\left(\mathrm{1}+\mathrm{cos}\:\mathrm{2}\gamma\right)}= \\ $$ Commented by behi83417@gmail.com last updated on 05/Jun/18…

Find-the-area-under-the-curve-y-a-2-x-2-included-between-the-lines-x-0-and-x-4-plz-help-

Question Number 102233 by nimnim last updated on 07/Jul/20 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{under}\:\mathrm{the}\:\mathrm{curve}\:\mathrm{y}=\sqrt{\mathrm{a}^{\mathrm{2}} −\mathrm{x}^{\mathrm{2}} } \\ $$$$\mathrm{included}\:\mathrm{between}\:\mathrm{the}\:\mathrm{lines}\:\mathrm{x}=\mathrm{0}\:\mathrm{and}\:\mathrm{x}=\mathrm{4} \\ $$$$ \\ $$$$\mathrm{plz}\:\mathrm{help}….. \\ $$ Answered by 30-04-1945 last updated…

1-find-the-value-of-0-1-ln-1-x-3-dx-then-find-the-value-of-0-1-ln-1-x-x-2-dx-2-find-the-value-of-0-1-ln-1-x-3-dx-then-calculate-0-1-ln-1-x-x-2-dx-

Question Number 36689 by prof Abdo imad last updated on 04/Jun/18 $$\left.\mathrm{1}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}−{x}^{\mathrm{3}} \right){dx}\:{then} \\ $$$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} \right){dx} \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+{x}^{\mathrm{3}} \right){dx}\:{then}\:…

let-f-t-0-1-ln-1-tx-3-dx-with-0-lt-t-1-find-a-simple-form-of-f-t-2-calculate-0-1-ln-2-x-3-dx-

Question Number 36690 by prof Abdo imad last updated on 04/Jun/18 $${let}\:\:{f}\left({t}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{ln}\left(\mathrm{1}\:−{tx}^{\mathrm{3}} \right){dx}\:\:{with}\:\mathrm{0}<{t}\leqslant\mathrm{1} \\ $$$${find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({t}\right)\: \\ $$$$\left.\mathrm{2}\right){calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{ln}\left(\mathrm{2}−{x}^{\mathrm{3}} \right){dx}\:. \\ $$ Commented…

Question-36677

Question Number 36677 by mondodotto@gmail.com last updated on 04/Jun/18 Commented by prof Abdo imad last updated on 04/Jun/18 $$\left.\mathrm{3}\right)\:{let}\:{decompose}\:{F}\left({x}\right)=\:\frac{\mathrm{2}{x}^{\mathrm{3}} \:−\mathrm{4}{x}\:−\mathrm{8}}{\left({x}^{\mathrm{2}} −{x}\right)\left({x}^{\mathrm{2}} \:+\mathrm{4}\right)} \\ $$$${F}\left({x}\right)=\:\frac{\mathrm{2}{x}^{\mathrm{3}} −\mathrm{4}{x}\:−\mathrm{8}}{{x}\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{2}}…