Question Number 34985 by NECx last updated on 14/May/18 Answered by ajfour last updated on 14/May/18 $${Dividing}\:{numerator}\:{and}\:{Denominator} \\ $$$${by}\:\mathrm{cos}\:^{\mathrm{10}} {x}\:\:{we}\:{get} \\ $$$$=\int\frac{\mathrm{tan}\:^{\mathrm{2}} {x}\left(\mathrm{sec}\:^{\mathrm{2}} {x}\right)^{\mathrm{2}} }{\left(\mathrm{tan}\:^{\mathrm{5}}…
Question Number 100514 by mathmax by abdo last updated on 27/Jun/20 $$\mathrm{calculatelim}_{\mathrm{n}\rightarrow+\infty} \:\int_{\mathrm{0}} ^{\infty} \:\left(\mathrm{1}−\frac{\mathrm{x}}{\mathrm{n}}\right)^{\mathrm{n}} \mathrm{ln}\left(\mathrm{1}+\mathrm{2x}\right)\mathrm{dx} \\ $$ Answered by mathmax by abdo last updated…
Question Number 100513 by mathmax by abdo last updated on 27/Jun/20 $$\mathrm{findA}_{\mathrm{nm}} \:=\int_{\mathrm{0}} ^{\infty} \:\:\mathrm{e}^{−\mathrm{nx}} \:\mid\mathrm{sin}\left(\mathrm{px}\right)\mid\:\mathrm{dx}\:\:\mathrm{with}\:\:\mathrm{n}\:\mathrm{and}\:\mathrm{p}\:\mathrm{integr}\:\mathrm{natural}\:\geqslant\mathrm{1} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 100512 by mathmax by abdo last updated on 27/Jun/20 $$\mathrm{calculate}\:\int_{−\infty} ^{+\infty} \:\frac{\mathrm{x}^{\mathrm{n}} }{\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{x}+\mathrm{1}\right)^{\mathrm{n}} }\:\mathrm{dx}\:\:\mathrm{with}\:\mathrm{n}\:\mathrm{integr}\:\mathrm{and}\:\mathrm{n}\geqslant\mathrm{2} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 100511 by mathmax by abdo last updated on 27/Jun/20 $$\mathrm{calculate}\:\:\int_{−\infty} ^{\infty} \:\:\frac{\mathrm{arctan}\left(\mathrm{cosx}\:+\mathrm{sinx}\right)}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{4}}\:\mathrm{dx} \\ $$ Answered by abdomathmax last updated on 28/Jun/20 $$\mathrm{I}\:=\int_{−\infty}…
Question Number 166033 by mathlove last updated on 12/Feb/22 Commented by MJS_new last updated on 12/Feb/22 $$\mathrm{e}^{\mathrm{68}} \pi \\ $$ Answered by Eulerian last updated…
Question Number 34956 by behi83417@gmail.com last updated on 13/May/18 Commented by a.i msup by abdo last updated on 13/May/18 $${changement}\:\sqrt{{x}}={t}\:{give} \\ $$$${I}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{t}}{{t}^{\mathrm{4}} \:+{t}^{\mathrm{2}}…
Question Number 100468 by Mikael_786 last updated on 26/Jun/20 $$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}}{\left(\mathrm{2}{n}+\mathrm{1}\right)!} \\ $$$${help}\:{me}\:{pls} \\ $$ Answered by mathmax by abdo last updated on 26/Jun/20…
Question Number 100450 by 175 last updated on 26/Jun/20 Answered by maths mind last updated on 26/Jun/20 $$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left(\mathrm{1}−{x}\right)^{{a}} }{\:\sqrt{{x}}.\sqrt{\mathrm{1}−{x}}.\sqrt{\mathrm{1}+{x}}}{dx}={f}\left({a}\right) \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{−\frac{\mathrm{1}}{\mathrm{2}}}…
Question Number 34910 by abdo imad last updated on 12/May/18 $${find}\:{J}_{{n},{p}} \:=\int_{\mathrm{0}} ^{\infty} \:\:{x}^{{n}} \:\:{e}^{−\frac{{x}^{\mathrm{2}} }{{p}}} \:\:{dx}\:\:{with}\:{p}>\mathrm{0}\:{and}\:{n}\:{integr} \\ $$ Commented by candre last updated on…