Question Number 34296 by math khazana by abdo last updated on 03/May/18 $${find}\:\:\int_{−\infty} ^{+\infty} \:\:{e}^{−{jx}^{\mathrm{2}} } \:\:\:\:{with}\:\:{j}\:={e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \\ $$ Commented by candre last updated on…
Question Number 34295 by math khazana by abdo last updated on 03/May/18 $${find}\:\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{n}\left[{x}\right]} \:{cos}\left({x}\right){dx}\:\:\:{with}\:{n}>\mathrm{0}\: \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 34294 by math khazana by abdo last updated on 03/May/18 $${find}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{nx}} \mid{sinx}\mid{dx}\:\:{with}\:{n}>\mathrm{0} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 99831 by mathmax by abdo last updated on 23/Jun/20 $$\mathrm{solve}\:\mathrm{the}\:\mathrm{ds}\:\:\:\begin{cases}{\mathrm{x}^{'} \:+\mathrm{2y}^{'} \:=\mathrm{sint}}\\{\mathrm{3x}^{'} +\mathrm{y}^{'} \:=\mathrm{te}^{\mathrm{t}} }\end{cases} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 34293 by math khazana by abdo last updated on 03/May/18 $${calculate}\:\int\int_{{D}} \:\:{x}^{\mathrm{2}} {y}\:{dxdy}?\:\:{with} \\ $$$${D}\:=\:\left\{\left({x},{y}\right)\in\:{R}^{\mathrm{2}} \:/\:\mathrm{0}\leqslant{y}\leqslant\mathrm{1}−{x}^{\mathrm{2}} \:,\mid{x}+{y}\:+\mathrm{3}\mid\:\leqslant\mathrm{5}\right\} \\ $$ Terms of Service Privacy…
Question Number 34292 by math khazana by abdo last updated on 03/May/18 $${calculate}\:\int\int_{{w}} \:\left({x}+{y}\right){e}^{{x}−{y}} {dxdy}\:{with} \\ $$$${w}=\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} \:/\:\mid{x}\mid\:\leqslant\mathrm{1}\:\:{and}\:\mid{y}+\mathrm{1}\mid\leqslant\mathrm{3}\:\right\} \\ $$ Commented by math khazana by…
Question Number 34291 by math khazana by abdo last updated on 03/May/18 $${let}\:{B}\left({x},{y}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} {u}^{{x}−\mathrm{1}} \left(\mathrm{1}−{u}\right)^{{y}−\mathrm{1}} \:{du}\:\:{and} \\ $$$$\Gamma\left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} \:{t}^{{x}−\mathrm{1}} \:{e}^{−{t}} {dt} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\Gamma\left({x}\right)\:=\:\mathrm{2}\int_{\mathrm{0}}…
Question Number 99824 by mathmax by abdo last updated on 23/Jun/20 $$\mathrm{calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{xe}^{−\mathrm{x}^{\mathrm{2}} } \mathrm{arctan}\left(\frac{\mathrm{2}}{\mathrm{x}}\right)\mathrm{dx} \\ $$ Answered by maths mind last updated on…
Question Number 34290 by math khazana by abdo last updated on 03/May/18 $${calculate}\:\int\int_{{D}} \:\:\:\:\:\:\:\frac{{dxdy}}{\left(\mathrm{1}+{x}+{y}\right)^{\mathrm{2}} } \\ $$$${D}\:=\left\{\left({x},{y}\right)\in\:{R}^{\mathrm{2}} \:/\:\:\mathrm{1}\leqslant{x}+{y}\leqslant\:\mathrm{2}\right\}\: \\ $$ Terms of Service Privacy Policy…
Question Number 34289 by math khazana by abdo last updated on 03/May/18 $$\:{calculate}\:\int\int_{{w}} \:\:\left({xy}\:−\mathrm{2}\right){dxdy}\:\:{with}\: \\ $$$${w}\:=\:\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} \:/\:\:{x}\geqslant\mathrm{0}\:{and}\:\:\mathrm{1}\leqslant{y}\leqslant\mathrm{2}−{x}\:\right\} \\ $$ Commented by math khazana by abdo…