Menu Close

Category: Integration

let-give-the-sequence-of-integrals-J-n-0-x-n-e-x-2-2-dx-1-prove-that-J-n-n-1-J-n-2-n-2-2-calculate-J-2p-and-J-2p-1-by-using-factoriels-3-prove-that-n-1-J-n-2-J

Question Number 34222 by abdo imad last updated on 03/May/18 $${let}\:{give}\:{the}\:{sequence}\:{of}\:{integrals} \\ $$$${J}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:{x}^{{n}} \:\:{e}^{−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}} {dx} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{J}_{{n}} =\left({n}−\mathrm{1}\right){J}_{{n}−\mathrm{2}} \:\:\:\forall{n}\geqslant\mathrm{2} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{J}_{\mathrm{2}{p}}…

let-give-I-0-1-ln-x-1-x-dx-and-J-0-1-ln-1-x-x-dx-1-prove-the-existence-of-I-and-J-2-calculate-I-J-and-2I-J-3-find-I-and-J-

Question Number 34216 by abdo imad last updated on 02/May/18 $${let}\:{give}\:{I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left({x}+\mathrm{1}\right)}{{x}}{dx}\:{and}\:{J}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}−{x}\right)}{{x}}{dx} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{the}\:{existence}\:{of}\:{I}\:{and}\:{J} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{I}\:+{J}\:{and}\:\mathrm{2}{I}\:+{J} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{I}\:{and}\:{J}\:. \\ $$ Terms of…

Let-f-0-1-R-is-a-continuous-function-prove-that-lim-n-0-1-n-f-x-1-n-2-x-2-dx-pi-2-f-0-proof-S-n-

Question Number 165271 by mnjuly1970 last updated on 28/Jan/22 $$ \\ $$$$\:\:\:\:\:\mathrm{L}{et}\:,\:\:\:{f}\::\:\left[\:\mathrm{0}\:,\:\mathrm{1}\:\right]\:\rightarrow\:\mathbb{R}\:\:{is}\:{a}\:{continuous}\: \\ $$$$\:\:\:\:{function}\:,\:{prove}\:{that}\::\:\:\: \\ $$$$\:\:\:\:\:\:\:\:{lim}_{\:{n}\rightarrow\:\infty} \:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{n}\:{f}\left({x}\right)}{\mathrm{1}+\:{n}^{\mathrm{2}} \:{x}^{\:\mathrm{2}} }\:{dx}\:=\:\frac{\pi}{\mathrm{2}}\:{f}\:\left(\mathrm{0}\:\right) \\ $$$$\:\:\:\:\:−−−\:{proof}\:−−− \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{S}_{\:{n}}…