Menu Close

Category: Integration

Question-99516

Question Number 99516 by 175 last updated on 21/Jun/20 Answered by mathmax by abdo last updated on 21/Jun/20 $$\mathrm{I}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{\mathrm{dx}}{\mathrm{cos}^{\mathrm{4}} \mathrm{x}+\mathrm{sin}^{\mathrm{4}} \mathrm{x}−\mathrm{cos}^{\mathrm{2}} \mathrm{xsin}^{\mathrm{2}} \mathrm{x}}\:\Rightarrow\:\mathrm{I}\:=\int_{\mathrm{0}}…

1-let-consider-f-x-cosx-pi-periodix-developp-f-at-fourier-serie-2-find-the-valueof-n-1-1-n-4n-2-1-3-find-the-value-of-n-1-1-4n-2-1-2-

Question Number 33980 by abdo imad last updated on 28/Apr/18 $$\left.\mathrm{1}\right)\:{let}\:{consider}\:{f}\left({x}\right)=\mid{cosx}\mid\:\pi\:{periodix} \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{serie} \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{valueof}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{4}{n}^{\mathrm{2}} \:−\mathrm{1}} \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\mathrm{1}}{\left(\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }\:.…

we-give-for-t-gt-0-0-sinx-x-e-tx-dx-pi-2-arctant-use-this-result-to-find-the-value-of-0-1-e-x-sinx-x-2-dx-

Question Number 33979 by abdo imad last updated on 28/Apr/18 $${we}\:{give}\:{for}\:{t}>\mathrm{0}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sinx}}{{x}}\:{e}^{−{tx}} {dx}\:=\frac{\pi}{\mathrm{2}}\:−{arctant} \\ $$$${use}\:{this}\:{result}\:{to}\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\left(\mathrm{1}−{e}^{−{x}} \right){sinx}}{{x}^{\mathrm{2}} }{dx}\:. \\ $$ Commented by abdo…

Question-99504

Question Number 99504 by pticantor last updated on 21/Jun/20 Answered by Ar Brandon last updated on 21/Jun/20 $$\mathrm{Posons}\:\mathrm{x}=\sqrt{\mathrm{2}}\mathrm{tan}\theta\Rightarrow\mathrm{dx}=\sqrt{\mathrm{2}}\mathrm{sec}^{\mathrm{2}} \theta\mathrm{d}\theta \\ $$$$\mathcal{I}=\int\frac{\sqrt{\mathrm{2}}\mathrm{sec}^{\mathrm{2}} \theta}{\left(\mathrm{2tan}^{\mathrm{2}} \theta+\mathrm{2}\right)^{\mathrm{2}} }\mathrm{d}\theta=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\int\frac{\mathrm{1}}{\mathrm{sec}^{\mathrm{2}} \theta}\mathrm{d}\theta=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\int\mathrm{cos}^{\mathrm{2}}…