Menu Close

Category: Integration

let-a-and-b-from-R-a-lt-b-f-a-b-C-continje-prove-that-n-N-a-b-k-0-n-1-x-k-f-x-dx-0-f-0-

Question Number 33346 by prof Abdo imad last updated on 14/Apr/18 $${let}\:{a}\:{and}\:{b}\:{from}\:{R}\:/{a}<{b}\:\:{f}\:\:\left[{a},{b}\right]\rightarrow{C}\:{continje} \\ $$$${prove}\:{that}\:\:\forall{n}\:\in{N}\:\:\int_{{a}} ^{{b}} \left(\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left({x}+{k}\right)\right){f}\left({x}\right){dx}=\mathrm{0} \\ $$$$\Rightarrow\:{f}=\mathrm{0} \\ $$ Terms of Service…

for-x-0-let-x-x-x-1-prove-that-x-1-x-x-n-1-1-n-x-n-2-ptove-that-1-3-prove-that-0-e-x-ln-x-dx-

Question Number 33345 by prof Abdo imad last updated on 14/Apr/18 $$\left.{for}\:{x}\in\right]\mathrm{0},+\infty\left[\:{let}\:\psi\left({x}\right)\:=\:\frac{\Gamma^{'} \left({x}\right)}{\Gamma\left({x}\right)}\right. \\ $$$$\left.\mathrm{1}\right){prove}\:{that}\:\psi\left({x}\right)\:=−\frac{\mathrm{1}}{{x}}\:−\gamma\:+{x}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}\left({x}+{n}\right)} \\ $$$$\left.\mathrm{2}\right){ptove}\:{that}\:\gamma\:=−\Gamma^{'} \left(\mathrm{1}\right) \\ $$$$\left.\mathrm{3}\right)\:{prove}\:{that}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}} {ln}\left({x}\right){dx}\:=−\gamma\:.…

find-the-value-of-0-dx-1-x-2-a-2-x-2-2-find-the-value-of-A-0-dx-1-x-2-x-2-1-sin-2-0-lt-lt-pi-2-

Question Number 33341 by prof Abdo imad last updated on 14/Apr/18 $${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left({a}^{\mathrm{2}} \:+{x}^{\mathrm{2}} \right)} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of} \\ $$$${A}\left(\theta\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\:{x}^{\mathrm{2}} \:+\mathrm{1}\:−{sin}^{\mathrm{2}}…

let-I-n-0-1-1-x-1-1-x-n-n-dx-and-J-n-1-n-1-x-1-x-n-n-dx-n-integr-not-0-1-prove-that-lim-I-n-0-1-1-e-x-x-dx-lim-J-n-0-1-e-1-x-x-dx-n-2-

Question Number 33342 by prof Abdo imad last updated on 14/Apr/18 $${let}\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}}{{x}}\left(\mathrm{1}−\left(\mathrm{1}−\frac{{x}}{{n}}\right)^{{n}} \right){dx}\:{and} \\ $$$${J}_{{n}} \:=\:\int_{\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{x}}\left(\mathrm{1}−\frac{{x}}{{n}}\right)^{{n}} {dx}\:\:,{n}\:{integr}\:{not}\:\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{lim}_{} \:{I}_{{n}}…