Question Number 65401 by mathmax by abdo last updated on 29/Jul/19 $${let}\:{f}\left({x},{y}\right)=\left({x}+{y}\right)\sqrt{{x}+{y}−\mathrm{1}} \\ $$$${calculate}\:\:\int\int_{{D}} {f}\left({x},{y}\right){dxdy}\:{with}\: \\ $$$${D}\:=\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /\:\:\mathrm{1}\leqslant{x}\leqslant\mathrm{2}\:\:{and}\:\:\:\mathrm{1}\leqslant{y}\leqslant\sqrt{\mathrm{3}}\right\} \\ $$ Commented by mathmax by abdo…
Question Number 65398 by mathmax by abdo last updated on 29/Jul/19 $$\left.\mathrm{1}\right)\:{calculate}\:\:{A}_{{n}} =\int\int_{\left[\mathrm{1},{n}\left[^{\mathrm{2}} \right.\right.} \:\:\:\:\:{sin}\left({x}^{\mathrm{2}} \:+\mathrm{3}{y}^{\mathrm{2}} \right)\:{e}^{−{x}^{\mathrm{2}} −\mathrm{3}{y}^{\mathrm{2}} } {dxdy} \\ $$$$\left.\mathrm{2}\right)\:{determine}\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} \\ $$…
Question Number 65399 by mathmax by abdo last updated on 29/Jul/19 $$\left.\mathrm{1}\right)\:{calculate}\:{A}_{{n}} =\:\int\int_{\left[\mathrm{0},{n}\left[^{\mathrm{2}} \right.\right.} \:\:\:\frac{{dxdy}}{\:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{4}}} \\ $$$$\left.\mathrm{2}\right){find}\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} \\ $$ Commented by mathmax…
Question Number 65395 by imron876 last updated on 29/Jul/19 Commented by mathmax by abdo last updated on 29/Jul/19 $$\int\:\left(−\mathrm{1}\right)^{{x}} {dx}\:=\int\:{e}^{{i}\pi{x}} {dx}\:=\frac{\mathrm{1}}{{i}\pi}{e}^{{i}\pi{x}} \:+{c}\:=\frac{\left(−\mathrm{1}\right)^{{x}} }{{i}\pi}\:+{c} \\ $$…
Question Number 65387 by mathmax by abdo last updated on 29/Jul/19 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{arctan}\left(\mathrm{2}{x}\right)−{arctanx}}{{x}}{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 130907 by greg_ed last updated on 30/Jan/21 $$\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{ln}\:\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} \right)}{{x}}\:{dx} \\ $$ Commented by benjo_mathlover last updated on 30/Jan/21 այս հարցն արդեն պատասխանվել է Commented by…
Question Number 65372 by aliesam last updated on 29/Jul/19 $${I}=\int_{\mathrm{1}} ^{{e}} \:\frac{{dx}}{{x}\left(\mathrm{1}+{ln}^{\mathrm{2}} {x}\right)} \\ $$ Commented by Prithwish sen last updated on 29/Jul/19 $$\mathrm{put}\:\mathrm{lnx}=\mathrm{tan}\theta\Rightarrow\frac{\mathrm{dx}}{\mathrm{x}}=\mathrm{sec}^{\mathrm{2}} \theta\mathrm{d}\theta…
Question Number 65355 by mathmax by abdo last updated on 28/Jul/19 $${find}\:\int\:\:\:\frac{{dx}}{\:\sqrt{\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)\left({x}+\mathrm{3}\right)}} \\ $$ Commented by Prithwish sen last updated on 29/Jul/19 $$\int\frac{\mathrm{dx}}{\:\sqrt{\left\{\left(\mathrm{x}+\mathrm{2}\right)^{\mathrm{2}} −\mathrm{1}\right\}\left(\mathrm{x}+\mathrm{2}\right)}}\:\:\:\mathrm{putting}\:\left(\mathrm{x}+\mathrm{2}\right)=\mathrm{a} \\…
Question Number 65354 by mathmax by abdo last updated on 28/Jul/19 $${find}\:\:\int\:\:\:\:\:\:\frac{{dx}}{\:\sqrt{{x}^{\mathrm{2}} +{x}−\mathrm{2}}} \\ $$$$ \\ $$ Commented by mathmax by abdo last updated on…
Question Number 65352 by mathmax by abdo last updated on 28/Jul/19 $${give}\:{the}\:{integralA}_{{n}} =\:\int_{\mathrm{1}} ^{+\infty} \:\frac{{dt}}{\mathrm{1}+{x}^{{n}} }\:\:{with}\:{n}\:{integr}\:{and}\:{n}\geqslant\mathrm{2} \\ $$$${at}\:{form}\:{of}\:{serie}. \\ $$ Commented by mathmax by abdo…