Question Number 98589 by mathmax by abdo last updated on 14/Jun/20 $$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{sin}\left(\alpha\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{4}}\mathrm{dx}\:\:\mathrm{with}\:\alpha\:\mathrm{real} \\ $$ Answered by mathmax by abdo last updated…
Question Number 98588 by mathmax by abdo last updated on 14/Jun/20 $$\mathrm{calculate}\:\int_{−\infty} ^{\infty} \:\frac{\mathrm{xsin}\left(\mathrm{x}\right)}{\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }\mathrm{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 164120 by Zaynal last updated on 14/Jan/22 $$\mathrm{How}\:\mathrm{do}\:\mathrm{you}\:\mathrm{all}\:\mathrm{to}\:\mathrm{prove}\:\mathrm{Integral}; \\ $$$$\:\boldsymbol{{Prove}}\:\boldsymbol{{the}}; \\ $$$$\:\int\:\frac{\left(\boldsymbol{{In}}\:\boldsymbol{{x}}\right)\mathrm{2}}{\boldsymbol{{x}}}\:\boldsymbol{{dx}}\:=\:\frac{\mathrm{1}}{\mathrm{3}}\:\left(\boldsymbol{{In}}\:\boldsymbol{{x}}\right)^{\mathrm{3}} \\ $$ Commented by som(math1967) last updated on 14/Jan/22 $$\int\left({lnx}\right)^{\mathrm{2}} {d}\left({lnx}\right)=\frac{\mathrm{1}}{\mathrm{3}}\left({lnx}\right)^{\mathrm{3}}…
Question Number 164123 by Zaynal last updated on 14/Jan/22 $$\mathrm{very}\:\mathrm{nice}\:\mathrm{to}\:\mathrm{problem}: \\ $$$$\boldsymbol{{find}}\:\boldsymbol{{in}}\:\boldsymbol{{closed}}\:\boldsymbol{{form}}; \\ $$$$\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\boldsymbol{{log}}\:\left(\mathrm{1}−\boldsymbol{{x}}^{\mathrm{2}} \right)\:\boldsymbol{{log}}\:^{\boldsymbol{{n}}\:} \:\left(\mathrm{1}−\boldsymbol{{x}}\right)\:\boldsymbol{{dx}}; \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{n}}\:\in\:\:\mathbb{N}^{+} \\ $$$$\:^{\mathrm{z}.} \\ $$ Terms…
Question Number 98587 by mathmax by abdo last updated on 14/Jun/20 $$\mathrm{calculate}\:\:\int_{−\infty} ^{+\infty} \:\frac{\mathrm{cos}\left(\alpha\mathrm{x}\right)}{\mathrm{x}^{\mathrm{4}} \:+\mathrm{1}}\mathrm{dx}\:\:\left(\alpha\:\mathrm{real}\right) \\ $$ Answered by mathmax by abdo last updated on…
Question Number 33026 by prof Abdo imad last updated on 09/Apr/18 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}+{x}^{\mathrm{4}} }{\mathrm{1}+{x}^{\mathrm{6}} }\:{dx}\:. \\ $$ Commented by abdo imad last updated on…
Question Number 33027 by prof Abdo imad last updated on 09/Apr/18 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}^{\mathrm{3}} }{\mathrm{1}+{x}^{\mathrm{5}} }{dx}. \\ $$ Answered by Joel578 last updated on 14/Apr/18…
Question Number 33028 by prof Abdo imad last updated on 09/Apr/18 $${find}\:{the}\:{value}\:{of}\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{e}^{−\left[{t}\right]} }{{t}+\mathrm{1}}{dt}\:\:. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 33009 by kyle_TW last updated on 09/Apr/18 $${help}\:!\:!\:! \\ $$$$\int\:\frac{{dx}}{{csc}\left({x}\right)−\mathrm{1}}\:=\:? \\ $$$$ \\ $$$$\left[\:{my}\:{way}\:\right] \\ $$$$\int\left(\:\frac{{dx}}{\frac{\mathrm{1}}{{sinx}}\:−\:\mathrm{1}}\:\right) \\ $$$$=\int\frac{{sinx}}{\mathrm{1}−{sinx}}\:{dx} \\ $$$$=−\int\:\frac{{sinx}−\mathrm{1}+\mathrm{1}}{{sinx}−\mathrm{1}}\:{dx} \\ $$$$=−\int\mathrm{1}+\frac{\mathrm{1}}{{sinx}−\mathrm{1}}\:{dx} \\…
Question Number 98537 by student work last updated on 14/Jun/20 Commented by student work last updated on 14/Jun/20 $$\mathrm{helpe}\:\mathrm{me} \\ $$ Answered by mathmax by…