Menu Close

Category: Integration

prove-that-0-1-ln-2-1-x-x-2-dx-2-2-proof-1-x-ln-2-1-x-0-1-0-1-2ln-1-x-x-1-x-dx-lim-1-1-l

Question Number 166180 by mnjuly1970 last updated on 15/Feb/22 $$ \\ $$$$\:\:\:\:\:\:{prove}\:\:{that} \\ $$$$\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{ln}^{\:\mathrm{2}} \left(\mathrm{1}−{x}\:\right)}{{x}^{\:\mathrm{2}} }\:{dx}\:=\:\mathrm{2}\:\zeta\:\left(\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:−−−{proof}−−− \\ $$$$\:\:\:\:\boldsymbol{\phi}=\:\left[\frac{−\mathrm{1}}{{x}}\:{ln}^{\:\mathrm{2}} \left(\mathrm{1}−{x}\right)\:\right]_{\mathrm{0}} ^{\mathrm{1}} −\int_{\mathrm{0}}…