Question Number 163842 by mnjuly1970 last updated on 11/Jan/22 $$ \\ $$$$\:\:\:\:\:\:\:{calculate} \\ $$$$\:\:\:\: \\ $$$$\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\frac{\:\:\mathscr{A}{rctanh}\:\left({x}\right)}{{x}^{\:} }\right)^{\:\mathrm{2}} \:{dx}\:=? \\ $$$$\:\:\:\:\:\:\:\:\:−−\:{m}.{n}\:−− \\ $$ Answered…
Question Number 163838 by amin96 last updated on 11/Jan/22 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 163834 by amin96 last updated on 11/Jan/22 $$\int_{\mathrm{0}} ^{\infty} \frac{\boldsymbol{{t}}\left(\boldsymbol{{e}}^{\mathrm{4}\boldsymbol{{t}}} −\mathrm{1}\right)\left(\boldsymbol{{ln}}\left(\boldsymbol{{i}}\right)+\boldsymbol{{t}}\right)}{\boldsymbol{{e}}^{\mathrm{2}\boldsymbol{{t}}} }\boldsymbol{{dt}}=? \\ $$$$\boldsymbol{{by}}\:\:\boldsymbol{{M}}.\boldsymbol{{A}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 32763 by San Sophanethsan069 last updated on 01/Apr/18 Commented by abdo imad last updated on 01/Apr/18 $${let}\:{put}\:{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \left(\:\mid{sinx}\mid\:+\mid{cosx}\mid\right){dx}\:\:.{ch}\:.{x}=\pi\:+{t}\:{give} \\ $$$${I}\:=\:\int_{−\pi} ^{\pi} \:\left(\mid{sint}\mid\:+\mid{cost}\mid\right){dt}\:=\mathrm{2}\:\int_{\mathrm{0}}…
Question Number 163829 by milandou last updated on 11/Jan/22 $$\int\frac{\mathrm{1}}{\mathrm{cos}\:{x}} \\ $$ Commented by MJS_new last updated on 11/Jan/22 $$\int{x}+{y}=? \\ $$$$\mathrm{maybe}\:\mathrm{use}\:\mathrm{proper}\:\mathrm{syntax}? \\ $$ Answered…
Question Number 163828 by milandou last updated on 11/Jan/22 $$\int\frac{{e}^{{x}} }{{x}} \\ $$ Answered by Ar Brandon last updated on 11/Jan/22 $$=\int\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{x}^{{n}−\mathrm{1}} }{{n}!}{dx}=\int\left(\frac{\mathrm{1}}{{x}}+\underset{{n}=\mathrm{1}}…
Question Number 32740 by caravan msup abdo. last updated on 01/Apr/18 $${find}\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left({x}^{\mathrm{2}} \:+{t}^{\mathrm{2}} \right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$ Commented by abdo imad last updated…
Question Number 32741 by caravan msup abdo. last updated on 01/Apr/18 $${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{ln}\left({t}^{\mathrm{2}} \:+\mathrm{2}{t}\:{cosx}\:+\mathrm{1}\right)}{{t}}{dt}\:. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 32737 by caravan msup abdo. last updated on 01/Apr/18 $${let}\:{give}\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:\:{calculate}\:\:\int_{\mathrm{0}} ^{\infty} \frac{{arctan}\left(\frac{{x}}{{t}}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }\:{dt} \\ $$ Answered by hknkrc46 last updated on 09/Apr/18 $${t}={xcotu}\Rightarrow{dt}=−{xcsc}^{\mathrm{2}}…
Question Number 32739 by caravan msup abdo. last updated on 01/Apr/18 $${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{e}^{−{t}} }{\mathrm{1}+{xt}}{dt} \\ $$$${calculate}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right). \\ $$ Commented by abdo imad last…