Question Number 165955 by cortano1 last updated on 10/Feb/22 $$\:\:\:\:\mathrm{C}\:=\:\int_{\mathrm{0}} ^{\:\pi} \frac{\mathrm{dx}}{\mathrm{2}+\mathrm{cos}\:\mathrm{2x}}\:=? \\ $$ Answered by MJS_new last updated on 10/Feb/22 $$\underset{\mathrm{0}} {\overset{\pi} {\int}}\frac{{dx}}{\mathrm{2}+\mathrm{cos}\:\mathrm{2}{x}}=\mathrm{2}\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}}…
Question Number 165962 by amin96 last updated on 10/Feb/22 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 34866 by a.i msup by abdo last updated on 12/May/18 $${find}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{{arctan}\left({x}\left({t}\:+\frac{\mathrm{1}}{{t}}\right)\right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\: \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 34862 by a.i msup by abdo last updated on 12/May/18 $${find}\:{the}\:{value}\:{of} \\ $$$${f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{cosx}}{\mathrm{1}+\mathrm{2}{sin}\left(\mathrm{2}{x}\right)}{dx} \\ $$ Commented by prof Abdo imad last…
Question Number 100368 by bemath last updated on 26/Jun/20 $$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\int_{−\infty} ^{\infty} \mathrm{cos}\:\left({x}^{{n}} \right)\:{dx}\:=? \\ $$$${where}\:{n}=\mathrm{2}{k},\:{k}\in\mathbb{N},\:{k}\neq\mathrm{0} \\ $$ Answered by mathmax by abdo last updated…
Question Number 34827 by Cheyboy last updated on 11/May/18 $$\boldsymbol{{Find}}\:\int\:\boldsymbol{{Sin}}^{\mathrm{6}} \boldsymbol{{x}}\:\boldsymbol{{dx}} \\ $$$$ \\ $$ Commented by rahul 19 last updated on 11/May/18 $${sir}\:{how}\:\:\:\mathrm{sin}\:^{\mathrm{6}} {xdx}=\:\left(\frac{{e}^{{ix}}…
Question Number 100362 by Dara last updated on 26/Jun/20 $$\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} {e}^{\mathrm{2}{x}+{y}} {dydx} \\ $$ Answered by smridha last updated on 26/Jun/20 $$\int_{\mathrm{0}}…
Question Number 165853 by mathlove last updated on 09/Feb/22 Answered by MJS_new last updated on 09/Feb/22 $$\int\frac{\mathrm{2}{x}−\mathrm{1}}{\left({x}+\mathrm{2}\right)^{\mathrm{4}} \left({x}−\mathrm{1}\right)^{\mathrm{4}} }{dx}= \\ $$$$\:\:\:\:\:\left[\mathrm{Ostrogradski}'\mathrm{s}\:\mathrm{Method}\right] \\ $$$$=\frac{\mathrm{40}{x}^{\mathrm{5}} +\mathrm{100}{x}^{\mathrm{4}} −\mathrm{140}{x}^{\mathrm{3}}…
Question Number 34771 by abdo mathsup 649 cc last updated on 10/May/18 $${let}\:{A}\left({x}\right)=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{ln}\left(\mathrm{1}+{ix}^{\mathrm{2}} \right){dx} \\ $$$${find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({x}\right)\:\:\:\:\left({x}\in{R}\right) \\ $$ Commented by abdo mathsup 649…
Question Number 34720 by abdo mathsup 649 cc last updated on 10/May/18 $${let}\:{B}\left({p},{q}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{p}−\mathrm{1}} \left(\mathrm{1}−{x}\right)^{{q}−\mathrm{1}} {dx} \\ $$$${calculate}\:{B}\left(\frac{\mathrm{1}}{\mathrm{3}},\:\frac{\mathrm{1}}{\mathrm{3}}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{B}\left(\frac{\mathrm{1}}{\mathrm{2}}\:,\frac{\mathrm{2}}{\mathrm{3}}\right)\:. \\ $$ Terms of…