Menu Close

Category: Integration

let-x-gt-0-and-f-x-x-e-t-t-dt-1-calculate-f-x-2-find-lim-x-xf-x-and-lim-x-0-xf-x-

Question Number 32721 by caravan msup abdo. last updated on 31/Mar/18 $${let}\:{x}>\mathrm{0}\:{and}\:{f}\left({x}\right)=\int_{{x}} ^{+\infty} \:\:\frac{{e}^{−{t}} }{{t}}{dt} \\ $$$$\left.\mathrm{1}\right){calculate}\:{f}^{'} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{x}\rightarrow+\infty} {xf}\left({x}\right)\:{and}\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } {xf}\left({x}\right). \\ $$…

0-1-arccotgh-x-1-x-2-dx-by-M-A-

Question Number 163789 by amin96 last updated on 10/Jan/22 $$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{{arccotgh}}\left(\boldsymbol{{x}}\right)}{\mathrm{1}−\boldsymbol{{x}}^{\mathrm{2}} }\boldsymbol{{dx}}=? \\ $$$$\boldsymbol{{by}}\:\boldsymbol{{M}}.\boldsymbol{{A}} \\ $$ Commented by MJS_new last updated on 10/Jan/22 $$\mathrm{tanh}\:{x}\:=\frac{\mathrm{e}^{\mathrm{2}{x}}…

find-0-arctan-2x-e-tx-x-dc-with-t-gt-0-2-calculate-0-arctan-2x-x-e-x-dx-

Question Number 32718 by caravan msup abdo. last updated on 31/Mar/18 $${find}\:\:\int_{\mathrm{0}} ^{\infty} \:{arctan}\left(\mathrm{2}{x}\right)\:\frac{{e}^{−{tx}} }{{x}}\:{dc}\:{with}\:{t}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left(\mathrm{2}{x}\right)}{{x}}\:{e}^{−{x}} \:{dx}. \\ $$ Terms of Service…

0-1-ln-x-1-ln-1-x-x-dx-0-1-ln-x-1-ln-1-x-x-dx-by-M-A-

Question Number 163785 by amin96 last updated on 10/Jan/22 $$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{x}}−\mathrm{1}\right)\boldsymbol{\mathrm{ln}}\left(\mathrm{1}−\boldsymbol{\mathrm{x}}\right)}{\boldsymbol{\mathrm{x}}}\boldsymbol{\mathrm{dx}}=? \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{x}}−\mathrm{1}\right)\boldsymbol{\mathrm{ln}}\left(\mathrm{1}+\boldsymbol{\mathrm{x}}\right)}{\boldsymbol{\mathrm{x}}}\boldsymbol{\mathrm{dx}}=? \\ $$$$\boldsymbol{\mathrm{by}}\:\boldsymbol{\mathrm{M}}.\boldsymbol{\mathrm{A}} \\ $$ Terms of Service Privacy Policy…