Question Number 34633 by math khazana by abdo last updated on 09/May/18 $${let}\:{f}\left(\alpha\right)\:=\:\int_{−\infty} ^{+\infty} \:\:\frac{{arctan}\left(\mathrm{1}+\alpha{xi}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$${find}\:{f}\left(\alpha\right)\:. \\ $$ Terms of Service Privacy Policy…
Question Number 165685 by daus last updated on 06/Feb/22 $$\:_{\mathrm{0}} \int^{\mathrm{2}} \mid\:{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1}\:\mid\:{dx}\:=?\: \\ $$ Answered by TheSupreme last updated on 07/Feb/22 $$\int_{\mathrm{0}} ^{\mathrm{2}} \mid\left({x}−\mathrm{1}\right)^{\mathrm{2}}…
Question Number 34593 by abdo mathsup 649 cc last updated on 08/May/18 $$\left.\mathrm{1}\right)\:{calculate}\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{cos}\left(\alpha{x}^{{n}} \right)}{{x}^{\mathrm{2}} \:+{x}\:+\mathrm{1}}\:{dx}\:\:{with}\:{n}\:{integr} \\ $$$${natural} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\:\:\int_{−\infty} ^{\infty} \:\:\:\:\frac{{cos}\left(\:\alpha\:{x}^{\mathrm{2}{n}} \right)}{{x}^{\mathrm{2}} \:+{x}\:+\mathrm{1}}{dx}…
Question Number 100114 by bemath last updated on 25/Jun/20 Answered by john santu last updated on 25/Jun/20 Commented by bobhans last updated on 25/Jun/20 $$\mathrm{beautifull}…
Question Number 34561 by math khazana by abdo last updated on 08/May/18 $${find}\:{the}\:{value}\:\:{of}\:\:\int_{\mathrm{0}} ^{+\infty} \:\:\frac{{arctan}\left({x}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dx} \\ $$ Commented by math khazana by abdo…
Question Number 34562 by math khazana by abdo last updated on 08/May/18 $${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{arctanx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dx} \\ $$ Commented by math khazana by abdo…
Question Number 100089 by mathmax by abdo last updated on 24/Jun/20 $$\:\mathrm{calculate}\:\mathrm{A}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{sin}^{\mathrm{n}} \left(\mathrm{x}\right)}{\mathrm{sin}\left(\mathrm{nx}\right)}\mathrm{dx}\: \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 100088 by mathmax by abdo last updated on 24/Jun/20 $$\mathrm{calculate}\:\int\:\frac{\mathrm{cosx}}{\mathrm{cos}\left(\mathrm{3x}\right)}\mathrm{dx} \\ $$ Commented by Dwaipayan Shikari last updated on 24/Jun/20 $$−\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}}{log}\left(\frac{\sqrt{\mathrm{3}}{sin}\theta−{cos}\theta}{\:\sqrt{\mathrm{3}}{sin}\theta+{cos}\theta}\right)+{Constant} \\ $$…
Question Number 165615 by cortano1 last updated on 05/Feb/22 $$\:\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \:\frac{{dx}}{\:\sqrt{{x}}\:\left(\sqrt[{\mathrm{3}}]{{x}}+\sqrt[{\mathrm{4}}]{{x}}\right)}=? \\ $$ Answered by Ar Brandon last updated on 05/Feb/22 $${I}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{\:\sqrt{{x}}\left(\sqrt[{\mathrm{3}}]{{x}}+\sqrt[{\mathrm{4}}]{{x}}\right)}\:,\:{x}={t}^{\mathrm{12}}…
Question Number 100054 by M±th+et+s last updated on 24/Jun/20 $${I}_{{n},{m}} =\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left({ln}\left({x}\right)\right)^{{n}} \left({ln}\left({y}\right)\right)^{{m}} }{\mathrm{1}−{xy}}{dx}\:{dy} \\ $$ Answered by maths mind last updated…