Question Number 32481 by prof Abdo imad last updated on 25/Mar/18 $${find}\:\:\int_{\mathrm{0}} ^{\infty} \:\left(\sqrt{{t}\:}\:−\mathrm{2}\sqrt{{t}+\mathrm{1}}\:+\sqrt{\left.{t}+\mathrm{2}\right)}\:{dt}\right. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 98016 by bemath last updated on 11/Jun/20 $$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{\mathrm{ln}^{\mathrm{2}} \left({x}\right)}{{x}^{\mathrm{2}} +\mathrm{1}}\:{dx}\:?\: \\ $$ Commented by bobhans last updated on 11/Jun/20 $$\mathrm{substitution}\:{w}\:=\:−\mathrm{ln}\:\left({x}\right)\:,\:{x}\:=\:{e}^{−{w}} \\…
Question Number 32479 by prof Abdo imad last updated on 25/Mar/18 $${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+\mathrm{3}{x}\:+\mathrm{1}\right)} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 32477 by prof Abdo imad last updated on 25/Mar/18 $${calcilate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }{dx} \\ $$ Commented by prof Abdo imad last updated…
Question Number 32478 by prof Abdo imad last updated on 25/Mar/18 $${find}\:\:\int_{\mathrm{0}} ^{\infty} \:{ln}\left(\frac{\mathrm{1}+{t}^{\mathrm{2}} }{{t}^{\mathrm{2}} }\right){dt} \\ $$ Commented by prof Abdo imad last updated…
Question Number 163497 by Zaynal last updated on 07/Jan/22 Commented by Clide17 last updated on 07/Jan/22 $$\mathrm{The}\:\mathrm{function}\:\mathrm{is}\:{discontinuous}\:\mathrm{at}\:\mathrm{interval}\:\left[\mathrm{0},\:\mathrm{3}\right]. \\ $$ Answered by TheSupreme last updated on…
Question Number 32419 by Ajay 1234 last updated on 24/Mar/18 $$ \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 32420 by Ajay 1234 last updated on 24/Mar/18 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 163490 by Zaynal last updated on 07/Jan/22 $$\int_{\mathrm{0}} ^{\infty} \:\frac{\boldsymbol{{x}}^{\mathrm{3}} }{\boldsymbol{{e}}^{\boldsymbol{{x}}} \:−\mathrm{1}}\:\boldsymbol{{dx}} \\ $$ Answered by mnjuly1970 last updated on 07/Jan/22 $$\:\:\:\:\Gamma\:\left(\mathrm{4}\right).\zeta\:\left(\mathrm{4}\right)=\:\frac{\pi^{\:\mathrm{4}} }{\mathrm{15}}…
Question Number 163483 by Zaynal last updated on 07/Jan/22 Answered by alephzero last updated on 07/Jan/22 $$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{4}{x}^{\mathrm{3}} \left\{\frac{{d}^{\mathrm{2}} }{{dx}^{\mathrm{2}} }\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{5}} \right\}{dx}\:=\:? \\…