Menu Close

Category: Integration

find-the-value-of-D-dxdy-4x-2-y-2-1-2-D-x-y-R-2-x-2-y-2-1-and-y-2x-

Question Number 32342 by abdo imad last updated on 23/Mar/18 $${find}\:{the}\:{value}\:{of}\:\int\int_{{D}} \:\:\:\frac{{dxdy}}{\left(\mathrm{4}{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${D}=\left\{\left({x},{y}\right)\in\:{R}^{\mathrm{2}} \:/\:{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:\leqslant\mathrm{1}\:{and}\:{y}\:\leqslant\mathrm{2}{x}\:\right\}\:. \\ $$ Terms of Service…

dx-cosx-sin-3-x-sinx-cos-3-x-

Question Number 163414 by AbdullahIbrahim last updated on 06/Jan/22 $$\int\frac{\boldsymbol{{dx}}}{\:\sqrt{\boldsymbol{{cosx}}\:\boldsymbol{{sin}}^{\mathrm{3}} \boldsymbol{{x}}}+\sqrt{\boldsymbol{{sinx}}\:\boldsymbol{{cos}}^{\mathrm{3}} \boldsymbol{{x}}}} \\ $$ Answered by Ar Brandon last updated on 06/Jan/22 $${I}=\int\frac{{dx}}{\:\sqrt{\mathrm{cos}{x}\mathrm{sin}^{\mathrm{3}} {x}}+\sqrt{\mathrm{sin}{x}\mathrm{cos}^{\mathrm{3}} {x}}}…

let-give-from-R-and-2-1-and-I-n-0-pi-cos-nt-1-2-cost-2-dt-calculate-I-n-

Question Number 32341 by abdo imad last updated on 23/Mar/18 $${let}\:{give}\:\lambda\:{from}\:{R}\:{and}\:\lambda^{\mathrm{2}} \neq\mathrm{1}\:{and} \\ $$$${I}_{{n}} \left(\lambda\right)\:=\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{cos}\left({nt}\right)}{\mathrm{1}−\mathrm{2}\lambda{cost}\:+\lambda^{\mathrm{2}} }{dt}\:\:.{calculate}\:{I}_{{n}} \left(\lambda\right). \\ $$ Commented by abdo imad…

calculate-0-th-3x-th-2x-x-dx-

Question Number 32339 by abdo imad last updated on 23/Mar/18 $${calculate}\:\:\int_{\mathrm{0}} ^{+\infty} \:\:\:\frac{{th}\left(\mathrm{3}{x}\right)\:−{th}\left(\mathrm{2}{x}\right)}{{x}}\:{dx}\:. \\ $$ Commented by abdo imad last updated on 24/Mar/18 $${I}\:={lim}\:_{\xi\rightarrow+\infty} {I}\left(\xi\right)\:\:{with}\:{I}\left(\xi\right)\:=\:\int_{\mathrm{0}}…

1-calculate-a-dx-1-x-2-x-2-a-2-with-a-gt-0-2-find-the-value-of-2-dx-1-x-2-x-2-4-

Question Number 32337 by abdo imad last updated on 23/Mar/18 $$\left.\mathrm{1}\right){calculate}\:\int_{{a}} ^{+\infty} \:\:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\sqrt{{x}^{\mathrm{2}} \:−{a}^{\mathrm{2}} }}\:\:{with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\:\:\int_{\mathrm{2}} ^{+\infty} \:\:\:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\sqrt{{x}^{\mathrm{2}} \:−\mathrm{4}}}\:\:. \\ $$ Terms…