Menu Close

Category: Integration

sinx-sin3x-sin5x-sin7x-cosx-cos3x-cos5x-cos7x-dx-

Question Number 163072 by abdullahhhhh last updated on 03/Jan/22 $$\int\frac{\boldsymbol{\mathrm{sinx}}+\boldsymbol{\mathrm{sin}}\mathrm{3}\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{sin}}\mathrm{5}\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{sin}}\mathrm{7}\boldsymbol{\mathrm{x}}}{\boldsymbol{\mathrm{cosx}}+\boldsymbol{\mathrm{cos}}\mathrm{3}\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{cos}}\mathrm{5}\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{cos}}\mathrm{7}\boldsymbol{\mathrm{x}}}\:\boldsymbol{\mathrm{dx}} \\ $$ Answered by tounghoungko last updated on 03/Jan/22 $$\:\frac{\mathrm{sin}\:\mathrm{7}{x}+\mathrm{sin}\:{x}+\mathrm{sin}\:\mathrm{5}{x}+\mathrm{sin}\:\mathrm{3}{x}}{\mathrm{cos}\:\mathrm{7}{x}+\mathrm{cos}\:{x}+\mathrm{cos}\:\mathrm{5}{x}+\mathrm{cos}\:\mathrm{3}{x}}\: \\ $$$$\:=\:\frac{\mathrm{2sin}\:\mathrm{4}{x}\:\mathrm{cos}\:\mathrm{3}{x}+\mathrm{2sin}\:\mathrm{4}{x}\:\mathrm{cos}\:{x}}{\mathrm{2cos}\:\mathrm{4}{x}\:\mathrm{cos}\:\mathrm{3}{x}+\mathrm{2cos}\:\mathrm{4}{x}\:\mathrm{cos}\:{x}} \\ $$$$=\:\frac{\mathrm{sin}\:\mathrm{4}{x}}{\mathrm{cos}\:\mathrm{4}{x}} \\…

dx-1-sin-x-

Question Number 97526 by student work last updated on 08/Jun/20 $$\int\frac{\mathrm{dx}}{\mathrm{1}+\mathrm{sin}\:\mathrm{x}}=? \\ $$ Commented by bobhans last updated on 08/Jun/20 $$\frac{\mathrm{1}}{\mathrm{1}+\mathrm{sin}\:\mathrm{x}}×\frac{\mathrm{1}−\mathrm{sin}\:\mathrm{x}}{\mathrm{1}−\mathrm{sin}\:\mathrm{x}}\:=\:\frac{\mathrm{1}−\mathrm{sin}\:\mathrm{x}}{\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}} \\ $$$$\int\:\mathrm{sec}\:^{\mathrm{2}} \mathrm{x}−\mathrm{sec}\:\mathrm{x}\:\mathrm{tan}\:\mathrm{x}\:\mathrm{dx}\:=\:\mathrm{tan}\:\mathrm{x}−\mathrm{sec}\:\mathrm{x}\:+\:\mathrm{c}…

1-find-I-p-q-0-1-t-p-1-t-q-dt-with-pand-q-integrs-2-find-the-nature-of-I-n-n-

Question Number 31974 by abdo imad last updated on 17/Mar/18 $$\left.\mathrm{1}\right){find}\:{I}\left({p},{q}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{t}^{{p}} \:\left(\mathrm{1}−{t}\right)^{{q}} \:{dt}\:\:{with}\:{pand}\:{q}\:{integrs} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{nature}\:{of}\:\Sigma\:\:{I}_{\left({n},{n}\right)} \\ $$ Terms of Service Privacy Policy Contact:…