Menu Close

Category: Integration

sec-3-x-dx-tan-x-

Question Number 97239 by john santu last updated on 07/Jun/20 $$\int\:\frac{\mathrm{sec}\:^{\mathrm{3}} {x}\:{dx}}{\:\sqrt{\mathrm{tan}\:{x}}}\:?\: \\ $$ Commented by MJS last updated on 07/Jun/20 $${t}=\sqrt{\mathrm{tan}\:{x}}\:\mathrm{leads}\:\mathrm{to}\:\mathrm{2}\int\sqrt{{t}^{\mathrm{4}} +\mathrm{1}}{dt}\:\mathrm{and}\:\mathrm{we}\:\mathrm{cannot} \\ $$$$\mathrm{solve}\:\mathrm{this}\:\mathrm{using}\:\mathrm{elementary}\:\mathrm{calculus}…

0-1-ln-x-ln-1-x-dx-

Question Number 97235 by bobhans last updated on 07/Jun/20 $$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\mathrm{ln}\left(\mathrm{x}\right)\:\mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)\:\mathrm{dx}\:?\: \\ $$ Answered by abdomathmax last updated on 07/Jun/20 $$\mathrm{I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{lnxln}\left(\mathrm{1}−\mathrm{x}\right)\mathrm{dx}\:\:\mathrm{we}\:\mathrm{have}\:\mathrm{for}\:\mid\mathrm{x}\mid<\mathrm{1} \\…

2-3-x-2-x-2-sgn-x-1-dx-

Question Number 97218 by bobhans last updated on 07/Jun/20 $$\underset{−\mathrm{2}} {\overset{\mathrm{3}} {\int}}\:\mid{x}−\mathrm{2}\mid\:\lfloor\:\frac{{x}}{\mathrm{2}}\:\rfloor\:\mathrm{sgn}\:\left({x}−\mathrm{1}\right)\:{dx}\: \\ $$ Answered by john santu last updated on 07/Jun/20 $$\mathrm{sgn}\left({x}−\mathrm{1}\right)=\mathrm{1}\:,\:\mathrm{when}\:{x}>\mathrm{1} \\ $$$$\mathrm{sgn}\left({x}−\mathrm{1}\right)=−\mathrm{1},\:\mathrm{when}\:{x}<\mathrm{1}…

Question-97153

Question Number 97153 by eidmarie last updated on 06/Jun/20 Answered by MJS last updated on 06/Jun/20 $$−\int\frac{{x}^{\mathrm{3}} −{x}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{13}}{\left({x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} −{x}+\mathrm{3}\right)}{dx}= \\ $$$$=−\int{dx}+\frac{\mathrm{13}}{\mathrm{5}}\int\frac{{dx}}{{x}+\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{5}}\int\frac{\mathrm{8}{x}−\mathrm{41}}{{x}^{\mathrm{2}} −{x}+\mathrm{3}}{dx}= \\ $$$$=−{x}+\frac{\mathrm{13}}{\mathrm{5}}\mathrm{ln}\:\mid{x}+\mathrm{1}\mid\:−\frac{\mathrm{4}}{\mathrm{5}}\int\frac{\mathrm{2}{x}−\mathrm{1}}{{x}^{\mathrm{2}}…

Question-97130

Question Number 97130 by Quadri last updated on 06/Jun/20 Answered by Sourav mridha last updated on 06/Jun/20 $$=\frac{\mathrm{1}}{\mathrm{2}\boldsymbol{{ln}}\left(\mathrm{2}\right)}\int\frac{\boldsymbol{{d}}\left(\mathrm{1}+\mathrm{2}^{\boldsymbol{{x}}^{\mathrm{2}} } \right)}{\left(\mathrm{1}+\mathrm{2}^{\boldsymbol{{x}}^{\mathrm{2}} } \right)}=\frac{\mathrm{1}}{\boldsymbol{{ln}}\left(\mathrm{4}\right)}.\boldsymbol{{ln}}\left(\mathrm{1}+\mathrm{2}^{\boldsymbol{{x}}^{\mathrm{2}} } \right)+\boldsymbol{{c}} \\…

solve-x-x-1-dx-

Question Number 97091 by Mathudent last updated on 06/Jun/20 $${solve}\:\int{x}^{{x}+\mathrm{1}} {dx}\:. \\ $$ Answered by Sourav mridha last updated on 06/Jun/20 $$\int\boldsymbol{{e}}^{\left(\boldsymbol{{x}}+\mathrm{1}\right).\boldsymbol{{l}}\mathrm{n}\left(\boldsymbol{{x}}\right)} \boldsymbol{{dx}} \\ $$$$=\int\underset{\boldsymbol{{n}}=\mathrm{0}}…