Question Number 33894 by math khazana by abdo last updated on 26/Apr/18 $$\left.\mathrm{1}\right){let}\:{f}\:\:{R}\rightarrow{C}\:\:\mathrm{2}\pi\:{periodic}\:{even}\:\:/{f}\left({x}\right)={x}\: \\ $$$$\forall\:{x}\in\left[\mathrm{0},\pi\left[\:\:{developp}\:{f}\:{at}\:{fourier}\:{serie}\right.\right. \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\sum_{{p}=\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{\left(\mathrm{2}{p}+\mathrm{1}\right)^{\mathrm{2}} }\:. \\ $$ Commented by abdo…
Question Number 33895 by math khazana by abdo last updated on 26/Apr/18 $${let}\:\Gamma\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:{t}^{{x}−\mathrm{1}} \:{e}^{−{t}} {dt}\:\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\Gamma\left({x}\right)\Gamma\left(\mathrm{1}−{x}\right)=\:\frac{\pi}{{sin}\left(\pi{x}\right)} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}^{\mathrm{2}} } {dx}\:.…
Question Number 33888 by math khazana by abdo last updated on 26/Apr/18 $${developp}\:{at}\:{integr}\:{serie}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{dt}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} {sin}^{\mathrm{2}} {t}}}\:. \\ $$$${with}\:\mid{x}\mid<\mathrm{1}\:. \\ $$ Terms of Service Privacy…
Question Number 33885 by math khazana by abdo last updated on 26/Apr/18 $${developp}\:{at}\:{integr}\:{serie}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{{x}} {sin}\left({t}^{\mathrm{2}} \right){dt}\:. \\ $$ Commented by prof Abdo imad last updated…
Question Number 33883 by math khazana by abdo last updated on 26/Apr/18 $${find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\mathrm{1}+{xsin}^{\mathrm{2}} {t}\right){dt} \\ $$$${with}\:\mid{x}\mid<\mathrm{1}. \\ $$ Commented by math khazana by…
Question Number 33884 by math khazana by abdo last updated on 26/Apr/18 $${let}\:{F}\left({x}\right)=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{arctan}\left({xtant}\right)}{{tant}}\:{dt}\:{find}\:{a}\:{simple} \\ $$$${form}\:{of}\:{f}\left({x}\right)\:. \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{arctan}\left(\mathrm{2}{tant}\right)}{{tant}}{dt}\:. \\ $$ Commented by…
Question Number 99421 by adeyemi last updated on 20/Jun/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 99413 by maths mind last updated on 20/Jun/20 $$\int_{\mathrm{0}} ^{+\infty} \frac{{sin}\left({ax}\right)}{{e}^{\mathrm{2}\pi{x}} −\mathrm{1}}{dx} \\ $$ Answered by mathmax by abdo last updated on 20/Jun/20…
Question Number 164944 by mnjuly1970 last updated on 23/Jan/22 $$ \\ $$$$\:\:\:\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\infty} \:\:{e}^{\:−\:\sqrt{{x}}\:} .{ln}\:\left(\sqrt[{\mathrm{4}}]{{x}}\:\right){dx}\:=? \\ $$$$\:\:\:\:\:\:\:\:−−−−−−−−− \\ $$ Answered by Ar Brandon last updated…
Question Number 99403 by I want to learn more last updated on 20/Jun/20 $$\int\:\mathrm{x}^{\mathrm{x}} \:\:\mathrm{dx} \\ $$ Commented by PRITHWISH SEN 2 last updated on…