Question Number 164944 by mnjuly1970 last updated on 23/Jan/22 $$ \\ $$$$\:\:\:\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\infty} \:\:{e}^{\:−\:\sqrt{{x}}\:} .{ln}\:\left(\sqrt[{\mathrm{4}}]{{x}}\:\right){dx}\:=? \\ $$$$\:\:\:\:\:\:\:\:−−−−−−−−− \\ $$ Answered by Ar Brandon last updated…
Question Number 99403 by I want to learn more last updated on 20/Jun/20 $$\int\:\mathrm{x}^{\mathrm{x}} \:\:\mathrm{dx} \\ $$ Commented by PRITHWISH SEN 2 last updated on…
Question Number 164929 by mathlove last updated on 23/Jan/22 $$\underset{−\mathrm{2}} {\overset{\mathrm{2}} {\int}}\left[{x}\right]{dx}=? \\ $$ Answered by TheSupreme last updated on 23/Jan/22 $$\int_{{a}} ^{{b}} \lfloor{x}\rfloor{dx}=\int_{{a}} ^{\lfloor{a}\rfloor}…
Question Number 33845 by prof Abdo imad last updated on 26/Apr/18 $${let}\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{arctan}\left(\mathrm{1}\:+{n}\right)}{\:\sqrt{\mathrm{1}+{x}^{{n}} }}\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{I}_{{n}} \:. \\ $$ Commented by prof Abdo imad…
Question Number 33835 by prof Abdo imad last updated on 25/Apr/18 $${find}\:{the}\:{value}\:{of}\:\:\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{cos}\left(\pi{x}\right)}{\left({x}^{\mathrm{2}} \:+\mathrm{1}+{i}\right)^{\mathrm{2}} }\:{dx} \\ $$ Commented by prof Abdo imad last updated…
Question Number 164904 by Zaynal last updated on 23/Jan/22 $$\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{cos}^{−\mathrm{1}} \:.\left(\boldsymbol{{x}}\right)}{\boldsymbol{\mathrm{I}}\mathrm{n}\:\left(\left(\boldsymbol{{x}}\right)\:−\:\mathrm{3}^{\left(\boldsymbol{{x}}^{\mathrm{2}} −\mathrm{1}\right)} \right)}\:\boldsymbol{{dx}} \\ $$$$\left\{\boldsymbol{{z}}.\boldsymbol{{a}}\right\} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 33823 by 33 last updated on 25/Apr/18 $$\:\:{solve}\::\: \\ $$$$\:{I}\:=\:\underset{\mathrm{0}} {\overset{\pi} {\int}}\:\frac{\left({r}−{R}\:{cos}\theta\right)\:{sin}\:\theta\:}{\left({R}^{\mathrm{2}\:} +\:{r}^{\mathrm{2}} \:−\:\mathrm{2}{Rr}\:{cos}\:\theta\right)^{\mathrm{3}/\mathrm{2}} }\:{d}\theta \\ $$$${for}\:\:\:{r}\:<\:{R} \\ $$$${and}\:{r}\:>\:{R}\:\:{respectively}. \\ $$ Answered by…
Question Number 99326 by 175 last updated on 20/Jun/20 Answered by abdomathmax last updated on 20/Jun/20 $$\mathrm{at}\:\mathrm{form}\:\mathrm{of}\:\mathrm{serie} \\ $$$$\mathrm{I}\:=\int\:\:\frac{\mathrm{e}^{\mathrm{2x}} \:\mathrm{e}^{−\mathrm{x}^{\mathrm{2}} −\mathrm{5x}−\mathrm{4}} }{\mathrm{1}−\mathrm{e}^{\mathrm{x}−\mathrm{x}^{\mathrm{2}} −\mathrm{5x}−\mathrm{4}} }\:\mathrm{dx}\:=\int\:\:\frac{\mathrm{e}^{−\mathrm{x}^{\mathrm{2}} −\mathrm{3x}−\mathrm{4}}…
Question Number 33787 by Joel578 last updated on 24/Apr/18 $$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{\mathrm{1}}{{n}}\:\underset{\mathrm{1}} {\overset{{n}} {\int}}\:{n}^{\frac{\mathrm{1}}{{x}}} \:{dx}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 164853 by mnjuly1970 last updated on 22/Jan/22 $$ \\ $$$$\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{ln}\left(\mathrm{1}+{x}\:\right).{ln}\left({x}\right)}{\mathrm{1}−{x}}\:{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com