Question Number 31415 by abdo imad last updated on 08/Mar/18 $${let}\:\mathrm{0}<{x}<\mathrm{1}\:\:{find}\:\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{{x}} {lnt}\:.{ln}\left(\mathrm{1}−{t}\right){dt}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 31414 by abdo imad last updated on 08/Mar/18 $${find}\:\:\:\int_{\mathrm{0}} ^{\sqrt{\mathrm{3}}\:} \:\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} \:\:+\sqrt{{x}+\mathrm{1}}}\:. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 162471 by mr W last updated on 29/Dec/21 $$\left[{reposted}\right] \\ $$$${find}\:\underset{\:\mathrm{0}} {\overset{\:\frac{\boldsymbol{\pi}}{\mathrm{2}}} {\int}}\:\mathrm{sin}^{\mathrm{8}} \left(\mathrm{x}\right){dx}\:+\:\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\mathrm{sin}^{-\mathrm{1}} \left(\sqrt[{\mathrm{8}}]{\mathrm{x}}\right)\:{dx}=? \\ $$ Answered by Ar Brandon…
Question Number 96925 by M±th+et+s last updated on 05/Jun/20 $$\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left({x}^{\mathrm{2}} +\mathrm{1}\right)}{{x}+\mathrm{1}}{dx} \\ $$ Answered by mathmax by abdo last updated on 06/Jun/20 $$\mathrm{let}\:\mathrm{f}\left(\alpha\right)\:=\int_{\mathrm{0}}…
Question Number 96911 by Ar Brandon last updated on 05/Jun/20 $$\int_{−\infty} ^{+\infty} \frac{\mathrm{x}^{\mathrm{2}} \mathrm{sinh}\left(\mathrm{x}\right)+\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{x}\right)\centerdot\mathrm{log}\left(\mathrm{x}^{\mathrm{4}} +\mathrm{1}\right)}{\pi\mathrm{e}^{\mathrm{x}^{\mathrm{2}} } +\sqrt[{\mathrm{3}}]{\mathrm{x}^{\mathrm{8}} +\mathrm{3cosh}\left(\mathrm{x}\right)}}\mathrm{dx} \\ $$ Commented by 675480065 last…
Question Number 96898 by bobhans last updated on 05/Jun/20 Commented by PRITHWISH SEN 2 last updated on 05/Jun/20 $$\frac{\mathrm{1}}{\mathrm{6}}\int\left\{\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{6x}}\:+\mathrm{x}\right\}\mathrm{dx}=\frac{\mathrm{1}}{\mathrm{6}}\int\sqrt{\left(\mathrm{x}+\mathrm{3}\right)^{\mathrm{2}} −\mathrm{9}}\:\mathrm{dx}\:+\frac{\mathrm{1}}{\mathrm{6}}\int\mathrm{xdx} \\ $$$$=\frac{\left(\mathrm{x}+\mathrm{3}\right)}{\mathrm{12}}\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{6x}}\:−\frac{\mathrm{3}}{\mathrm{4}}\mathrm{ln}\mid\left(\mathrm{x}+\mathrm{3}\right)+\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{6x}}\mid+\frac{\mathrm{x}^{\mathrm{2}}…
Question Number 96886 by M±th+et+s last updated on 05/Jun/20 $${solve}\:{by}\:{using}\:{trapezoidal}\:{rule}\:{h}=\mathrm{0}.\mathrm{2} \\ $$$${and}\:{e}=\mathrm{2}.\mathrm{718} \\ $$$$\int_{\mathrm{1}} ^{\mathrm{2}.\mathrm{2}} \frac{{e}^{{x}^{\mathrm{2}} } }{{x}}{dx} \\ $$ Commented by PRITHWISH SEN 2…
Question Number 96883 by M±th+et+s last updated on 05/Jun/20 $${solve}\:{by}\:{simpson}'{s}\:{rule}\: \\ $$$$\int_{\mathrm{1}} ^{\mathrm{2}.\mathrm{2}} \frac{{e}^{{x}^{\mathrm{2}} } }{{x}}{dx} \\ $$ Commented by M±th+et+s last updated on 05/Jun/20…
Question Number 96864 by bemath last updated on 05/Jun/20 $$\int\:\frac{\mathrm{dy}}{\mathrm{y}^{\mathrm{2}} \left(\mathrm{5}−\mathrm{y}^{\mathrm{2}} \right)}\:? \\ $$ Commented by bemath last updated on 05/Jun/20 $$\mathrm{thank}\:\mathrm{you}\:\mathrm{both} \\ $$ Answered…
Question Number 96846 by bobhans last updated on 05/Jun/20 Commented by john santu last updated on 05/Jun/20 $$\left[\:{a}^{\mathrm{2}} {x}+\left(\mathrm{2}−\mathrm{2}{a}\right){x}^{\mathrm{2}} +{x}^{\mathrm{4}} \:\right]_{\mathrm{1}} ^{\mathrm{2}} \:\leqslant\:\mathrm{12} \\ $$$$\Leftrightarrow\:{a}^{\mathrm{2}}…