Question Number 162299 by mathmax by abdo last updated on 28/Dec/21 $$\mathrm{calculta}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{lnx}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }\mathrm{dx} \\ $$ Answered by Ar Brandon last updated on…
Question Number 96763 by bobhans last updated on 04/Jun/20 $$\int\:\frac{\mathrm{sin}\:\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\:\mathrm{tan}\:\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\:\mathrm{dx}}{\mathrm{cos}\:\mathrm{x}}\:=\:? \\ $$ Answered by Sourav mridha last updated on 04/Jun/20 $$=\int\frac{\mathrm{1}−\boldsymbol{{cosx}}}{\mathrm{2}\boldsymbol{{cos}}\left(\frac{\boldsymbol{{x}}}{\mathrm{2}}\right)\boldsymbol{{cosx}}}\boldsymbol{{dx}} \\ $$$$=\int\frac{\boldsymbol{{sec}}^{\mathrm{2}} \frac{\boldsymbol{{x}}}{\mathrm{2}}}{\:\sqrt{\mathrm{1}−\boldsymbol{{tan}}^{\mathrm{2}} \frac{\boldsymbol{{x}}}{\mathrm{2}}}}\boldsymbol{{d}}\left(\frac{\boldsymbol{{x}}}{\mathrm{2}}\right)−\int\boldsymbol{{sec}}\frac{\boldsymbol{{x}}}{\mathrm{2}}\boldsymbol{{d}}\left(\frac{\boldsymbol{{x}}}{\mathrm{2}}\right)…
Question Number 162298 by mathmax by abdo last updated on 28/Dec/21 $$\mathrm{find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{lnx}\:\mathrm{ln}\left(\mathrm{1}−\mathrm{x}^{\mathrm{3}} \right)\mathrm{dx} \\ $$ Answered by Ar Brandon last updated on 28/Dec/21…
Question Number 96758 by bobhans last updated on 04/Jun/20 $$\mathrm{Let}\:{x}\in\:\left[\:−\frac{\mathrm{5}\pi}{\mathrm{12}}\:,\:−\frac{\pi}{\mathrm{3}}\:\right]\:.\:\mathrm{The}\:\mathrm{maximum}\: \\ $$$$\mathrm{value}\:\mathrm{of}\:\mathrm{y}\:=\:\mathrm{tan}\:\left({x}+\frac{\mathrm{2}\pi}{\mathrm{3}}\right)−\mathrm{tan}\:\left({x}+\frac{\pi}{\mathrm{6}}\right)\:+\mathrm{cos}\:\left({x}+\frac{\pi}{\mathrm{6}}\right) \\ $$$$\mathrm{is}\:\_\_\_ \\ $$ Commented by john santu last updated on 04/Jun/20 $$\mathrm{set}\:{m}\:=\:−{x}−\frac{\pi}{\mathrm{6}},\:{m}\in\:\left[\:\frac{\pi}{\mathrm{6}},\:\frac{\pi}{\mathrm{4}}\:\right]…
Question Number 96748 by MJS last updated on 04/Jun/20 $$\mathrm{nobody}\:\mathrm{tried}\:\mathrm{question}\:\mathrm{94184}… \\ $$ Commented by bemath last updated on 04/Jun/20 how did mister solve this integral? Terms of Service Privacy Policy…
Question Number 96746 by MJS last updated on 04/Jun/20 $$\int\frac{\sqrt{{x}}}{\left(\mathrm{1}+{x}^{\mathrm{3}} \right)\sqrt{\mathrm{1}−{x}^{\mathrm{3}} }}{dx}=? \\ $$$$\int\frac{\sqrt{{x}}}{\left(\mathrm{1}−{x}^{\mathrm{3}} \right)\sqrt{\mathrm{1}+{x}^{\mathrm{3}} }}{dx}=? \\ $$ Commented by bemath last updated on 04/Jun/20…
Question Number 96705 by bemath last updated on 04/Jun/20 $$\int\:\mathrm{ln}\left(\sqrt{\mathrm{1}−\mathrm{x}}+\sqrt{\mathrm{1}+\mathrm{x}}\right)\:\mathrm{dx}\:=\:? \\ $$ Answered by john santu last updated on 04/Jun/20 $$\mathrm{D}.\mathrm{I}\:\mathrm{method} \\ $$$$\mathrm{I}\:=\:{x}\:\mathrm{ln}\left(\sqrt{\mathrm{1}−{x}}+\sqrt{\mathrm{1}+{x}}\right)\:−\int\:\frac{{x}\left(\frac{−\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{1}−{x}}}+\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{1}+{x}}}\right)}{\:\sqrt{\mathrm{1}−{x}}+\sqrt{\mathrm{1}+{x}}}\:{dx} \\ $$$$\mathrm{I}\:=\:{x}\:\mathrm{ln}\left(\sqrt{\mathrm{1}−{x}}+\sqrt{\mathrm{1}+{x}}\right)−\frac{\mathrm{1}}{\mathrm{2}}\int\:{x}\left(\frac{\sqrt{\mathrm{1}−{x}^{\mathrm{2}}…
Question Number 162243 by cortano last updated on 28/Dec/21 $$\:\:\:\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \:\left(\frac{\left(\mathrm{ln}\:{x}\right)^{\mathrm{4}} }{\:\sqrt{{x}}\:}\right)\:{dx}\:=? \\ $$ Answered by aleks041103 last updated on 28/Dec/21 $$\frac{{dx}}{\:\sqrt{{x}}}=\mathrm{2}{d}\left(\sqrt{{x}}\right) \\ $$$$\Rightarrow{I}=\int_{\:\mathrm{0}}…
Question Number 96699 by Rio Michael last updated on 04/Jun/20 $$\int\:\frac{\mathrm{tan}^{\mathrm{3}} \left(\mathrm{ln}\:{x}\right)}{{x}}\:{dx}\:=\:?? \\ $$ Commented by bobhans last updated on 04/Jun/20 $$\mathrm{u}=\mathrm{ln}\left(\mathrm{x}\right)\:\Rightarrow\:\int\:\mathrm{tan}\:^{\mathrm{3}} \mathrm{u}\:\mathrm{du}\:=\:\int\left(\mathrm{sec}\:^{\mathrm{2}} \mathrm{u}−\mathrm{1}\right)\mathrm{tan}\:\mathrm{u}\:\mathrm{du} \\…
Question Number 162238 by amin96 last updated on 27/Dec/21 $$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}^{\mathrm{7}} +\mathrm{1}}\boldsymbol{\mathrm{dx}}=? \\ $$ Answered by Ar Brandon last updated on 27/Dec/21 $${z}^{\mathrm{7}} +\mathrm{1}=\mathrm{0}\Rightarrow{z}_{{k}}…