Menu Close

Category: Integration

find-dx-x-1-x-2-x-3-

Question Number 65355 by mathmax by abdo last updated on 28/Jul/19 $${find}\:\int\:\:\:\frac{{dx}}{\:\sqrt{\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)\left({x}+\mathrm{3}\right)}} \\ $$ Commented by Prithwish sen last updated on 29/Jul/19 $$\int\frac{\mathrm{dx}}{\:\sqrt{\left\{\left(\mathrm{x}+\mathrm{2}\right)^{\mathrm{2}} −\mathrm{1}\right\}\left(\mathrm{x}+\mathrm{2}\right)}}\:\:\:\mathrm{putting}\:\left(\mathrm{x}+\mathrm{2}\right)=\mathrm{a} \\…

Question-65332

Question Number 65332 by aliesam last updated on 28/Jul/19 Commented by mathmax by abdo last updated on 29/Jul/19 $${let}\:{suppose}\:{n}\:{inter}\:{let}\:{decompose}\:{the}\:{fraction} \\ $$$${F}\left({x}\right)\:=\frac{{x}}{{x}^{{n}} \:+\mathrm{1}} \\ $$$${z}^{{n}} \:+\mathrm{1}\:=\mathrm{0}\:\Rightarrow{z}^{{n}}…

Question-65320

Question Number 65320 by hovea cw last updated on 28/Jul/19 Commented by mathmax by abdo last updated on 28/Jul/19 $${let}\:{I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}+{x}}{lnxdx}\:{changement}\:\sqrt{\mathrm{1}+{x}}={t}\:{give}\:\mathrm{1}+{x}\:={t}^{\mathrm{2}} \:\Rightarrow \\ $$$${x}\:={t}^{\mathrm{2}}…

advanced-calculus-prove-that-0-pi-3-dx-cos-2-x-1-3-2-1-3-pi-3-

Question Number 130844 by mnjuly1970 last updated on 29/Jan/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…\:\:\:{advanced}\:\:\:{calculus}… \\ $$$$\:\:\:\:{prove}\:\:{that}:: \\ $$$$\:\:\:\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{3}}} \frac{{dx}}{\:\sqrt[{\mathrm{3}}]{{cos}^{\mathrm{2}} \left({x}\right)}}\:=\frac{\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{3}}} \sqrt{\pi}}{\:\sqrt{\mathrm{3}}} \\ $$ Answered by Dwaipayan Shikari last…

4x-3-dx-2x-2-2x-3-

Question Number 65307 by divyajyoti last updated on 28/Jul/19 $$\int\frac{\left(\mathrm{4}{x}+\mathrm{3}\right){dx}}{\:\sqrt{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{3}}}\:=\:?\: \\ $$ Answered by divyajyoti last updated on 28/Jul/19 $$=\int\frac{{dt}}{\:\sqrt{{t}}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\int\frac{{dx}}{\:\sqrt{\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} −\left(\frac{\sqrt{\mathrm{7}}}{\mathrm{2}}\right)^{\mathrm{2}} }} \\ $$$$=\mathrm{2}\sqrt{\mathrm{2}{x}^{\mathrm{2}}…