Menu Close

Category: Integration

sec-d-

Question Number 96613 by s.ayeni14@yahoo.com last updated on 03/Jun/20 $$\int\mathrm{sec}\theta\mathrm{d}\theta \\ $$ Answered by  M±th+et+s last updated on 03/Jun/20 $$\int{sec}\left(\theta\right)\frac{{sec}\left(\theta\right)+{tan}\left(\theta\right)}{{sec}\left(\theta\right)+{tan}\left(\theta\right)}{d}\theta \\ $$$$={ln}\mid{sec}\left(\theta\right)+{tan}\left(\theta\right)\mid+{c} \\ $$$${i}\:{have}\:{more}\:{than}\:\mathrm{9}\:{ways}\:{to}\:{solve}\:{this} \\…

Please-how-will-you-evaluate-dx-

Question Number 96604 by Rio Michael last updated on 03/Jun/20 $$\mathrm{Please}\:\mathrm{how}\:\mathrm{will}\:\mathrm{you}\:\mathrm{evaluate} \\ $$$$\:\int\:\sqrt{{dx}}\:??? \\ $$ Commented by MJS last updated on 03/Jun/20 $$\mathrm{it}'\mathrm{s}\:\mathrm{an}\:\mathrm{error}\:\mathrm{of}\:\mathrm{syntax}.\:“{dx}''\:\mathrm{has}\:\mathrm{to}\:\mathrm{be}\:\mathrm{the}\:\mathrm{last} \\ $$$$\mathrm{term}\:\mathrm{of}\:\mathrm{an}\:\mathrm{integral}.\:“{dx}''\:\mathrm{can}\:\mathrm{never}\:\mathrm{be}\:\mathrm{a}…