Question Number 96479 by M±th+et+s last updated on 01/Jun/20 $${show}\:{that} \\ $$$$\int_{\mathrm{1}} ^{{e}} \frac{{x}−{xln}\left({x}\right)+\mathrm{1}}{{x}\left({x}+\mathrm{1}\right)^{\mathrm{2}} +{x}\:{ln}^{\mathrm{2}} \left({x}\right)}{dx}={arctan}\left(\frac{\mathrm{1}}{{e}+\mathrm{1}}\right) \\ $$ Answered by Sourav mridha last updated on…
Question Number 96481 by student work last updated on 01/Jun/20 $$\int\frac{\mathrm{1}}{\mathrm{dx}}=? \\ $$ Commented by mr W last updated on 01/Jun/20 $${your}\:{new}\:{invention}? \\ $$ Commented…
Question Number 162015 by mathmax by abdo last updated on 25/Dec/21 $$\mathrm{find}\:\int_{−\infty} ^{+\infty} \:\frac{\mathrm{dx}}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}\right)^{\mathrm{4}} } \\ $$ Answered by MJS_new last updated on 25/Dec/21…
Question Number 30936 by abdo imad last updated on 01/Mar/18 $${find}\:\:\:\underset{\mathrm{0}} {\int}^{{a}} \:\:\frac{{sinx}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{dx}\:. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 162002 by mnjuly1970 last updated on 25/Dec/21 $$ \\ $$$$\:\:\:\:\:\:\:\:{calculate} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \mathrm{Li}_{\:\mathrm{2}} \:\left(\mathrm{1}\:−\:{x}^{\:\mathrm{4}} \right){dx}\:=\:? \\ $$$$\:\:\:\:−−−−− \\ $$ Answered…
Question Number 161994 by amin96 last updated on 25/Dec/21 $$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{\mathrm{ln}}\mid\boldsymbol{{x}}\mid\boldsymbol{\mathrm{ln}}\mid\frac{\mathrm{1}+\boldsymbol{\mathrm{x}}}{\mathrm{1}−\boldsymbol{\mathrm{x}}}\mid}{\mathrm{1}−\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\boldsymbol{\mathrm{dx}}=??? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 96436 by Rio Michael last updated on 01/Jun/20 $$\oint\:{x}^{\mathrm{2}} \:{dx}\:=\:??? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 161967 by amin96 last updated on 24/Dec/21 $$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{\mathrm{ln}}^{\mathrm{2}} \left(\boldsymbol{\mathrm{x}}\right)}{\left(\mathrm{1}−\boldsymbol{\mathrm{x}}^{\mathrm{2}} \right)}\boldsymbol{\mathrm{dx}}=? \\ $$ Answered by phanphuoc last updated on 25/Dec/21 $$\forall{x}\in\left(\mathrm{0},\mathrm{1}\right)\:\mathrm{1}/\left(\mathrm{1}−{x}^{\mathrm{2}} \right)=\Sigma{x}^{\mathrm{2}{k}}…
Question Number 161966 by amin96 last updated on 24/Dec/21 $$\int\boldsymbol{\mathrm{x}}^{\mathrm{2}} \mathrm{7}^{\boldsymbol{\mathrm{x}}^{\mathrm{2}} } \boldsymbol{\mathrm{dx}}=? \\ $$ Answered by Ar Brandon last updated on 25/Dec/21 $${I}=\int{x}^{\mathrm{2}} \mathrm{7}^{{x}^{\mathrm{2}}…
Question Number 30858 by gopikrishnan005@gmail.com last updated on 27/Feb/18 $$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{x}\mid\mathrm{x}−\mathrm{4}\mid\mathrm{dx} \\ $$ Answered by mrW2 last updated on 27/Feb/18 $$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{x}\mid\mathrm{x}−\mathrm{4}\mid\mathrm{dx} \\…