Question Number 30574 by abdo imad last updated on 23/Feb/18 $${find}\:\int\int_{\left[\mathrm{1},{e}\right]^{\mathrm{2}} } \:\:\:{ln}\left({xy}\right){dxdy}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 30573 by abdo imad last updated on 23/Feb/18 $${find}\:\int\int_{\left[\mathrm{0},\mathrm{1}\right]×\left[\mathrm{0},\mathrm{1}\right]} \:\:\:\:\frac{{x}^{\mathrm{2}} }{\mathrm{1}+{y}^{\mathrm{2}} }{dxdy}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 30572 by abdo imad last updated on 23/Feb/18 $${find}\:\:{I}=\int\int_{\left[\mathrm{3},\mathrm{4}\right]×\left[\mathrm{1},\mathrm{2}\right]} \:\:\frac{{dxdy}}{\left({x}+{y}\right)^{\mathrm{2}} }\:. \\ $$ Commented by prof Abdo imad last updated on 24/Feb/18 $${I}=\:\int_{\mathrm{1}}…
Question Number 161646 by amin96 last updated on 20/Dec/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 30569 by abdo imad last updated on 23/Feb/18 $${find}\:{I}=\:\int\int_{{D}} \:\sqrt{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }−\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }}\:\:{dxdy}\:\:{with}\:{D}\:{is}\:{the}\:{interior} \\ $$$${of}\:{ellipce}\:\:\:\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\:+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\:=\mathrm{1}. \\ $$ Terms…
Question Number 30570 by abdo imad last updated on 23/Feb/18 $${find}\:\int\int_{{U}} \:\frac{{dxdy}}{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }\:{with}\:{U}=\:\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /\mathrm{1}\leqslant{x}^{\mathrm{2}} \:+\mathrm{2}{y}^{\mathrm{2}} \leqslant\mathrm{4}\right\} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 30566 by abdo imad last updated on 23/Feb/18 $${study}\:{the}\:{convergence}\:{of}\:{A}\left(\alpha\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{\alpha−\mathrm{1}} }{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\:{and} \\ $$$${find}\:{its}\:{value}. \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 30568 by abdo imad last updated on 23/Feb/18 $${find}\:\int_{−\mathrm{1}} ^{\mathrm{1}} \:\:\:\:\:\:\frac{{dx}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:+\sqrt{\mathrm{1}−{x}^{\mathrm{2}} \:}}\:. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 30564 by abdo imad last updated on 23/Feb/18 $${f}\:{and}\:{g}\:{are}\:\mathrm{2}\:{function}\:\:{C}^{{n}} \:{on}\:\left[{a},{b}\right]\:{prove}\:{that} \\ $$$$\int_{{a}} ^{{b}} \:{f}^{\left({n}\right)} \left({x}\right){g}\left({x}\right){dx}=\left[\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left(−\mathrm{1}\right)^{{k}} \:{f}^{\left({k}\right)} {g}^{\left({n}−{k}\right)} \right]_{{a}} ^{{b}} \:+\left(−\mathrm{1}\right)^{{n}} \int_{{a}}…
Question Number 96097 by mhmd last updated on 29/May/20 Answered by mathmax by abdo last updated on 29/May/20 $$\mathrm{A}\:=\int_{−\mathrm{1}} ^{\mathrm{1}} \:\frac{\mathrm{dx}}{\left(\mathrm{e}^{\mathrm{x}} +\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}\right)}\:\mathrm{changement}\:\mathrm{x}=−\mathrm{t}\:\mathrm{give} \\ $$$$\mathrm{A}\:=−\int_{−\mathrm{1}}…