Menu Close

Category: Integration

find-dx-tan-1-x-

Question Number 96092 by mhmd last updated on 29/May/20 $${find}\:\int\frac{{dx}}{{tan}^{−\mathrm{1}} \left({x}\right)} \\ $$ Commented by bemath last updated on 30/May/20 $$\int\:\mathrm{cot}^{−\mathrm{1}} \left({x}\right)\:{dx}\:=\:\mathrm{I} \\ $$$$\mathrm{by}\:\mathrm{parts}\:.\:\mathrm{u}\:=\:\mathrm{cot}^{−\mathrm{1}} \left({x}\right)\Rightarrow{du}=−\sqrt{\mathrm{1}−{x}^{\mathrm{2}}…

if-convexe-and-f-continue-on-a-b-prove-that-1-b-a-a-b-f-t-dt-1-b-a-a-b-of-t-dt-

Question Number 30557 by abdo imad last updated on 23/Feb/18 $${if}\:\varphi\:{convexe}\:{and}\:{f}\:{continue}\:{on}\:\left[{a},{b}\right]\:{prove}\:{that} \\ $$$$\varphi\left(\:\frac{\mathrm{1}}{{b}−{a}}\:\int_{{a}} ^{{b}} \:{f}\left({t}\right){dt}\right)\leqslant\:\frac{\mathrm{1}}{{b}−{a}}\:\int_{{a}} ^{{b}} \:\varphi{of}\left({t}\right){dt}. \\ $$ Terms of Service Privacy Policy Contact:…

let-put-for-lt-1-u-n-0-pi-cos-nx-1-2-cosx-2-dx-find-u-n-interms-of-n-and-

Question Number 30548 by abdo imad last updated on 23/Feb/18 $${let}\:{put}\:\:{for}\:\mid\lambda\mid<\mathrm{1}\:\:\:\:{u}_{{n}} =\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\:\frac{{cos}\left({nx}\right)}{\mathrm{1}−\mathrm{2}\lambda{cosx}\:+\lambda^{\mathrm{2}} }{dx}\: \\ $$$${find}\:{u}_{{n}} \:{interms}\:{of}\:{n}\:{and}\:\lambda. \\ $$ Terms of Service Privacy Policy…

e-x-1-sin-x-1-cos-x-dx-

Question Number 96083 by john santu last updated on 29/May/20 $$\int\:\frac{\mathrm{e}^{\mathrm{x}} \left(\mathrm{1}+\mathrm{sin}\:\mathrm{x}\right)}{\mathrm{1}+\mathrm{cos}\:\mathrm{x}}\:\mathrm{dx}\: \\ $$ Answered by john santu last updated on 29/May/20 $$\int\:\left(\frac{{e}^{{x}} }{\mathrm{1}+\mathrm{cos}\:{x}}\:+\:\frac{{e}^{{x}} \mathrm{sin}\:{x}}{\mathrm{1}+\mathrm{cos}\:{x}}\right){dx}\:=\:…

3x-2-x-dx-

Question Number 96076 by bobhans last updated on 29/May/20 $$\int\:\mathrm{3x}.\mathrm{2}^{\mathrm{x}} \:\mathrm{dx}\:?\: \\ $$ Answered by i jagooll last updated on 29/May/20 $$\int\:\left(\mathrm{3x}\right)\:\mathrm{d}\left(\frac{\mathrm{2}^{\mathrm{x}} }{\mathrm{ln}\:\mathrm{2}}\right)\:=\: \\ $$$$\frac{\mathrm{3x}.\mathrm{2}^{\mathrm{x}}…