Question Number 96161 by bemath last updated on 30/May/20 $$\underset{\mathrm{1}} {\overset{\mathrm{4}} {\int}}\:\frac{\mathrm{sech}\:^{\mathrm{2}} \left(\sqrt{{x}}\right)+\mathrm{tanh}\:\left(\sqrt{{x}}\right)}{\:\sqrt{{x}}\:}\:{dx}\:? \\ $$ Commented by bemath last updated on 30/May/20 $$\mathrm{thanks} \\ $$…
Question Number 96128 by bemath last updated on 30/May/20 $${find}\:\int\int_{{R}} \:\left({x}+\mathrm{2}{y}\right)^{\mathrm{2}} \:{dxdy}\:{in}\:{R}=\left[−\mathrm{1},\mathrm{2}\right]\:×\left[\mathrm{0},\mathrm{2}\right]\: \\ $$ Answered by john santu last updated on 30/May/20 $$\underset{\mathrm{0}} {\overset{\mathrm{2}} {\int}}\:\underset{−\mathrm{1}}…
Question Number 161660 by amin96 last updated on 20/Dec/21 $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \boldsymbol{{ln}}\left(\mathrm{1}+\sqrt{\mathrm{2}}\boldsymbol{{cos}}\left(\boldsymbol{{x}}\right)\right)\boldsymbol{{dx}}=??? \\ $$ Answered by mindispower last updated on 21/Dec/21 $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}{r}} \\ $$$${ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\boldsymbol{{cos}}\left(\frac{\boldsymbol{\pi}}{\mathrm{4}}−{x}\right)\right){dx}\mathrm{3}…
Question Number 161656 by amin96 last updated on 20/Dec/21 $$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{{xln}}\left(\mathrm{1}+\boldsymbol{{x}}\right)}{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }\boldsymbol{{dx}} \\ $$ Commented by Ar Brandon last updated on 21/Dec/21 Commented by…
Question Number 30585 by abdo imad last updated on 23/Feb/18 $${find}\:\:{F}_{{n}} \left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{x}^{{n}} }{{e}^{{x}+{n}} \:+\mathrm{1}}{dx}\:. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 161652 by Lordose last updated on 20/Dec/21 $$\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{xlog}\left(\mathrm{a}+\mathrm{x}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}\:\forall\:\mid\mathrm{a}\mid\:\in\:\mathbb{N} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 30584 by abdo imad last updated on 23/Feb/18 $${find}\:\:{I}=\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\frac{{e}^{−{x}^{\mathrm{2}} } }{{a}^{\mathrm{2}} \:+\left({v}−{x}\right)^{\mathrm{2}} }{dx}. \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 30580 by abdo imad last updated on 23/Feb/18 $${decompose}\:{inside}\:{C}\left[{x}\right]\:{F}=\:\frac{{x}^{{n}} }{{x}^{{m}} \:+\mathrm{1}}\:{with}\:{m}\geqslant{n}+\mathrm{2} \\ $$$${then}\:{find}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}^{{n}} }{{x}^{{m}} \:+\mathrm{1}}{dx}. \\ $$ Commented by prof Abdo…
Question Number 30575 by abdo imad last updated on 23/Feb/18 $${find}\:\int\int_{{D}} \:\left({x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \right){dxdy}\:\:{with} \\ $$$${D}=\left\{\left({x},{y}\right)/\:{x}\leqslant\mathrm{1}\:{and}\:{x}^{\mathrm{2}} \leqslant{y}\leqslant\mathrm{2}\:\right\}. \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 30574 by abdo imad last updated on 23/Feb/18 $${find}\:\int\int_{\left[\mathrm{1},{e}\right]^{\mathrm{2}} } \:\:\:{ln}\left({xy}\right){dxdy}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com