Menu Close

Category: Integration

find-R-x-2y-2-dxdy-in-R-1-2-0-2-

Question Number 96128 by bemath last updated on 30/May/20 $${find}\:\int\int_{{R}} \:\left({x}+\mathrm{2}{y}\right)^{\mathrm{2}} \:{dxdy}\:{in}\:{R}=\left[−\mathrm{1},\mathrm{2}\right]\:×\left[\mathrm{0},\mathrm{2}\right]\: \\ $$ Answered by john santu last updated on 30/May/20 $$\underset{\mathrm{0}} {\overset{\mathrm{2}} {\int}}\:\underset{−\mathrm{1}}…

0-pi-4-ln-1-2-cos-x-dx-

Question Number 161660 by amin96 last updated on 20/Dec/21 $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \boldsymbol{{ln}}\left(\mathrm{1}+\sqrt{\mathrm{2}}\boldsymbol{{cos}}\left(\boldsymbol{{x}}\right)\right)\boldsymbol{{dx}}=??? \\ $$ Answered by mindispower last updated on 21/Dec/21 $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}{r}} \\ $$$${ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\boldsymbol{{cos}}\left(\frac{\boldsymbol{\pi}}{\mathrm{4}}−{x}\right)\right){dx}\mathrm{3}…