Menu Close

Category: Integration

Question-196557

Question Number 196557 by BHOOPENDRA last updated on 27/Aug/23 Answered by qaz last updated on 27/Aug/23 $$\int_{\mathrm{0}} ^{{t}} {e}^{−{u}} \mathrm{sin}\:{udu}=−\Im\int_{\mathrm{0}} ^{{t}} {e}^{−\left(\mathrm{1}+{i}\right){u}} {du}=\Im\frac{\mathrm{1}}{\mathrm{1}+{i}}\left({e}^{−\left(\mathrm{1}+{i}\right){t}} −\mathrm{1}\right) \

Question-196496

Question Number 196496 by RoseAli last updated on 26/Aug/23 Answered by witcher3 last updated on 26/Aug/23 1tg2(x).cos6(x)$$=\int\frac{\mathrm{1}+\mathrm{tg}^{\mathrm{2}} \left(\mathrm{x}\right)}{\mathrm{tg}^{\mathrm{2}} \left(\mathrm{x}\right)}.\left(\mathrm{1}+\mathrm{tg}^{\mathrm{2}} \left(\mathrm{x}\right)\right)^{\mathrm{2}} \mathrm{dx}…

Question-196459

Question Number 196459 by RoseAli last updated on 25/Aug/23 Answered by Frix last updated on 25/Aug/23 UseOstrogradskisMethodtoget$$\int\frac{{x}^{\mathrm{4}} +{x}^{\mathrm{2}} +\mathrm{1}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}} }{dx}=\frac{{x}\left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{3}\right)}{\mathrm{2}\left({x}^{\mathrm{2}} +\mathrm{1}\right)}−\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dx}}{{x}^{\mathrm{2}}…