Menu Close

Category: Integration

dx-1-k-sin-x-where-k-lt-1-

Question Number 130616 by bramlexs22 last updated on 27/Jan/21 $$\:\int\:\frac{\mathrm{dx}}{\mathrm{1}−\mathrm{k}.\mathrm{sin}\:\mathrm{x}}\:?\:\mathrm{where}\:\mid\mathrm{k}\mid<\mathrm{1} \\ $$ Answered by EDWIN88 last updated on 27/Jan/21 $$\:\mathrm{let}\:\mathrm{tan}\:\left(\frac{{x}}{\mathrm{2}}\right)=\:{s}\:\Rightarrow{x}\:=\mathrm{2arctan}\:{s} \\ $$$$\:{dx}\:=\:\frac{\mathrm{2}{ds}}{{s}^{\mathrm{2}} +\mathrm{1}}\:;\:\mathrm{sin}\:{x}\:=\:\mathrm{2tan}\:\left(\frac{{x}}{\mathrm{2}}\right)\mathrm{cos}\:^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right) \\…

0-x-2-tan-1-x-1-x-6-dx-

Question Number 130598 by Lordose last updated on 27/Jan/21 $$\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{x}^{\mathrm{2}} \mathrm{tan}^{−\mathrm{1}} \left(\mathrm{x}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{6}} }\mathrm{dx} \\ $$ Answered by mindispower last updated on 27/Jan/21 $$=\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}}…

0-x-n-1-x-6-dx-

Question Number 130594 by Lordose last updated on 27/Jan/21 $$\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{x}^{\mathrm{n}} }{\mathrm{1}+\mathrm{x}^{\mathrm{6}} }\mathrm{dx} \\ $$ Answered by mindispower last updated on 27/Jan/21 $$\left.\:\:{existe}\:{if}\:{n}\in\right]−\mathrm{1},\mathrm{5}\left[=\int_{\mathrm{0}} ^{\infty}…

let-f-x-0-dt-x-t-t-2-3-with-x-gt-1-4-1-calculate-f-x-2-calculate-also-g-x-0-dt-x-t-t-2-4-3-find-the-values-of-0-dt-1-t-t-2-3-and-0-

Question Number 65061 by mathmax by abdo last updated on 24/Jul/19 $${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dt}}{\left({x}−{t}\:+{t}^{\mathrm{2}} \right)^{\mathrm{3}} }\:\:{with}\:\:\:{x}>\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{also}\:\:{g}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dt}}{\left({x}−{t}+{t}^{\mathrm{2}} \right)^{\mathrm{4}} } \\…

x-1-x-1-x-1-x-1-dx-

Question Number 65015 by aliesam last updated on 24/Jul/19 $$\int\frac{\sqrt{{x}+\mathrm{1}}\:−\:\sqrt{{x}−\mathrm{1}}}{\:\sqrt{{x}+\mathrm{1}}\:+\:\sqrt{{x}−\mathrm{1}}}\:{dx} \\ $$ Commented by mathmax by abdo last updated on 24/Jul/19 $${let}\:{I}\:=\int\:\:\frac{\sqrt{{x}+\mathrm{1}}−\sqrt{{x}−\mathrm{1}}}{\:\sqrt{{x}+\mathrm{1}}+\sqrt{{x}−\mathrm{1}}}{dx}\:\Rightarrow{I}\:=\int\:\frac{\left(\sqrt{{x}+\mathrm{1}}−\sqrt{{x}−\mathrm{1}}\right)^{\mathrm{2}} }{{x}+\mathrm{1}−{x}+\mathrm{1}}{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\:\int\:\left({x}+\mathrm{1}−\mathrm{2}\sqrt{{x}^{\mathrm{2}}…

sin-2-x-sec-2-x-2-1-x-2-tan-x-sin-1-x-1-x-2-1-tan-2-x-dx-

Question Number 130544 by EDWIN88 last updated on 26/Jan/21 $$\:\int\:\frac{\mathrm{sin}\:^{\mathrm{2}} {x}\:\mathrm{sec}\:^{\mathrm{2}} {x}\:+\mathrm{2}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:\mathrm{tan}\:{x}\:\mathrm{sin}^{−\mathrm{1}} {x}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:\left(\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} {x}\right)}\:{dx}? \\ $$ Answered by mindispower last updated on 26/Jan/21…