Menu Close

Category: Integration

1-dx-1-2cos-x-2-sin-2x-sin-x-sin-2-2x-dx-3-dx-cos-2x-sin-x-

Question Number 161285 by cortano last updated on 15/Dec/21 $$\left(\mathrm{1}\right)\:\int\:\frac{{dx}}{\mathrm{1}−\mathrm{2cos}\:{x}} \\ $$$$\left(\mathrm{2}\right)\:\int\:\frac{\mathrm{sin}\:\mathrm{2}{x}}{\mathrm{sin}\:{x}−\mathrm{sin}\:^{\mathrm{2}} \mathrm{2}{x}}\:{dx} \\ $$$$\left(\mathrm{3}\right)\:\int\:\frac{{dx}}{\mathrm{cos}\:\mathrm{2}{x}−\mathrm{sin}\:{x}} \\ $$ Answered by bobhans last updated on 15/Dec/21 $$\left(\mathrm{1}\right)\:\int\:\frac{\mathrm{dx}}{\mathrm{1}−\mathrm{2cos}\:\mathrm{x}}\:=\:\int\:\frac{\mathrm{dx}}{\mathrm{1}−\mathrm{2}\left(\mathrm{2cos}\:^{\mathrm{2}}…

let-I-x-0-pi-dt-x-2-cos-2-t-1-prove-that-I-x-2-0-pi-2-dt-x-2-cos-2-t-2-find-the-value-of-I-x-

Question Number 30216 by abdo imad last updated on 18/Feb/18 $${let}\:{I}\left({x}\right)=\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{dt}}{{x}^{\mathrm{2}} \:+{cos}^{\mathrm{2}} {t}} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{I}\left({x}\right)=\:\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{dt}}{{x}^{\mathrm{2}} \:+{cos}^{\mathrm{2}} {t}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:{I}\left({x}\right). \\ $$…

let-give-J-x-1-pi-0-pi-cos-xcost-dt-1-find-J-and-J-in-form-of-integrals-2-prove-that-J-x-x-pi-0-pi-sin-2-t-cos-xcost-dt-and-J-is-solution-of-d-e-xy-y-xy-0-

Question Number 30215 by abdo imad last updated on 18/Feb/18 $${let}\:{give}\:{J}\left({x}\right)=\:\frac{\mathrm{1}}{\pi}\:\int_{\mathrm{0}} ^{\pi} {cos}\left({xcost}\right){dt} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{J}^{'} \:{and}\:{J}^{''} \:{in}\:{form}\:{of}\:{integrals} \\ $$$$\left.\mathrm{2}\right){prove}\:{that}\:{J}^{'} \left({x}\right)=\frac{−{x}}{\pi}\:\int_{\mathrm{0}} ^{\pi} \:{sin}^{\mathrm{2}} {t}\:{cos}\left({xcost}\right){dt}\:{and}\:{J}\:{is} \\ $$$${solution}\:{of}\:{d}.{e}.\:\:{xy}^{''}…

p-tan-x-p-tan-x-dx-

Question Number 95738 by bobhans last updated on 27/May/20 $$\int\:\frac{\mathrm{p}−\mathrm{tan}\:\mathrm{x}}{\mathrm{p}+\mathrm{tan}\:\mathrm{x}}\:\mathrm{dx}\: \\ $$ Commented by PRITHWISH SEN 2 last updated on 27/May/20 $$\frac{\mathrm{pcosx}−\mathrm{sin}\:\mathrm{x}}{\mathrm{pcos}\:\mathrm{x}+\mathrm{sin}\:\mathrm{x}}\:=\:\frac{\mathrm{m}\left(\mathrm{cos}\:\mathrm{x}−\mathrm{psin}\:\mathrm{x}\right)+\mathrm{n}\left(\mathrm{pcos}\:\mathrm{x}+\mathrm{sin}\:\mathrm{x}\right)}{\mathrm{pcos}\:\mathrm{x}+\mathrm{sin}\:\mathrm{x}} \\ $$$$\mathrm{m}=\frac{\mathrm{2p}}{\mathrm{1}+\mathrm{p}^{\mathrm{2}} }…

Given-f-x-f-x-2-x-R-If-0-2-f-x-dx-p-then-0-2020-f-x-2a-dx-for-a-Z-

Question Number 161256 by cortano last updated on 15/Dec/21 $$\:{Given}\:{f}\left({x}\right)={f}\left({x}+\mathrm{2}\right),\:\forall{x}\in\mathbb{R} \\ $$$$\:{If}\:\underset{\mathrm{0}} {\overset{\mathrm{2}} {\int}}{f}\left({x}\right){dx}=\:{p}\:{then}\:\underset{\mathrm{0}} {\overset{\mathrm{2020}} {\int}}{f}\left({x}+\mathrm{2}{a}\right){dx}=? \\ $$$$\:{for}\:{a}\in\mathbb{Z}^{+} \\ $$ Answered by talminator2856791 last updated…

let-I-0-pi-2-sinx-1-sinxcosx-dx-and-J-0-pi-2-cosx-1-sinx-cosx-dx-1-calculate-I-J-2-find-I-and-J-

Question Number 30185 by abdo imad last updated on 17/Feb/18 $${let}\:\:{I}=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\frac{{sinx}}{\:\sqrt{\mathrm{1}+{sinxcosx}}}{dx}\:{and} \\ $$$${J}=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{cosx}}{\:\sqrt{\mathrm{1}+{sinx}\:{cosx}}}\:{dx} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{I}\:+{J} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{I}\:{and}\:{J}. \\ $$ Terms of…