Menu Close

Category: Integration

2x-3-dx-2x-2-4x-3-

Question Number 95547 by Fikret last updated on 25/May/20 $$\int\frac{\mathrm{2}{x}^{\mathrm{3}} {dx}}{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{3}}=? \\ $$ Answered by MJS last updated on 25/May/20 $$\int\frac{\mathrm{2}{x}^{\mathrm{3}} }{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{3}}{dx}=\int\left({x}+\mathrm{2}+\frac{\mathrm{5}{x}−\mathrm{6}}{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{3}}\right){dx}=…

0-ln-1-x-1-x-2-2-dx-

Question Number 161076 by mnjuly1970 last updated on 11/Dec/21 $$ \\ $$$$ \\ $$$$\:\:\:\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\infty} \frac{{ln}\:\left(\mathrm{1}+\:{x}\:\right)}{\left(\mathrm{1}+\:{x}^{\:\mathrm{2}} \right)^{\:\mathrm{2}} }\:{dx}\:=\:? \\ $$$$\:\:\:\:\:−−−−−−−−−−−− \\ $$$$\:\:\:\:\:\:\:\: \\ $$ Answered…

prove-that-n-1-1-n-ln-1-1-n-2-show-that-k-2-1-k-k-k-

Question Number 29980 by abdo imad last updated on 14/Feb/18 $${prove}\:{that}\:\gamma=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\left(\frac{\mathrm{1}}{{n}}\:\:−{ln}\left(\mathrm{1}\:+\frac{\mathrm{1}}{{n}}\right)\right) \\ $$$$\left.\mathrm{2}\right){show}\:{that}\:\gamma=\:\sum_{{k}=\mathrm{2}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}}\:\xi\left({k}\right). \\ $$ Terms of Service Privacy Policy…

let-give-0-lt-lt-1-1-prove-that-pi-coth-pi-1-n-1-2-2-n-2-2-by-integration-on-0-1-find-n-1-1-1-n-2-

Question Number 29975 by abdo imad last updated on 14/Feb/18 $$\:{let}\:{give}\:\mathrm{0}<\alpha<\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\:\pi\:{coth}\left(\pi\alpha\right)\:−\frac{\mathrm{1}}{\alpha}\:=\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\:\frac{\mathrm{2}\alpha}{\alpha^{\mathrm{2}} \:+{n}^{\mathrm{2}} }. \\ $$$$\left.\mathrm{2}\right){by}\:{integration}\:{on}\left[\mathrm{0},\mathrm{1}\right]\:{find}\:\prod_{{n}=\mathrm{1}} ^{\infty} \:\left(\mathrm{1}+\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right). \\ $$ Commented…