Menu Close

Category: Integration

0-1-ln-ln-x-1-x-dx-1-2-ln-2-2-

Question Number 160982 by mnjuly1970 last updated on 10/Dec/21 $$ \\ $$$$\:\:\:\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{ln}\:\left(−{ln}\:\left({x}\right)\right)}{\mathrm{1}+{x}}\:{dx}\:\overset{?} {=}\frac{−\mathrm{1}}{\mathrm{2}}\:{ln}^{\:\mathrm{2}} \left(\mathrm{2}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

0-1-x-n-1-ln-1-x-dx-n-1-

Question Number 160979 by amin96 last updated on 10/Dec/21 $$\Omega=\int_{\mathrm{0}} ^{\mathrm{1}} \boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{n}}−\mathrm{1}} \boldsymbol{\mathrm{ln}}\left(\mathrm{1}−\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{dx}}=???\:\:\: \\ $$$$\boldsymbol{\mathrm{n}}\geqslant\mathrm{1} \\ $$ Answered by qaz last updated on 10/Dec/21 $$\Omega=−\underset{\mathrm{k}=\mathrm{1}}…

calculate-n-1-1-n-1-n-1-1-

Question Number 160928 by mnjuly1970 last updated on 09/Dec/21 $$ \\ $$$$\:\:\:\:\:\:\:{calculate} \\ $$$$ \\ $$$$\:\:\:\:\Omega\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:\zeta\:\left(\:\mathrm{1}+\:{n}\:\right)\:−\mathrm{1}}{{n}\:+\:\mathrm{1}}\:\overset{?} {=}\:\mathrm{1}−\:\gamma\: \\ $$$$\:−−−−−−−−−−− \\ $$ Answered by…