Question Number 160543 by mnjuly1970 last updated on 01/Dec/21 $$ \\ $$$$\mathrm{lim}_{\:{x}\rightarrow\:\mathrm{6}} \frac{\:\Gamma\:\left(\:{sin}\left(\:\frac{\pi}{{x}}\right)\right)−\Gamma\:\left(\frac{\mathrm{3}}{{x}}\:\right)}{{sin}\left(\:\pi{x}\:\right)}=\:? \\ $$$$ \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 95009 by bobhans last updated on 22/May/20 $$\int\:\:\frac{{e}^{{x}} +\mathrm{2}{xe}^{{x}} \mathrm{sin}\:{x}−\mathrm{2}{xe}^{{x}} \mathrm{cos}\:{x}}{\:\sqrt{{x}}\:\mathrm{sin}\:^{\mathrm{2}} {x}}\:{dx}\: \\ $$ Commented by bobhans last updated on 22/May/20 my children exam Commented…
Question Number 29455 by prof Abdo imad last updated on 08/Feb/18 $${find}\:\int\:\:\mathrm{3}^{\sqrt{\mathrm{2}{x}+\mathrm{1}}} \:{dx}\:. \\ $$ Commented by prof Abdo imad last updated on 12/Feb/18 $${the}\:{ch}.\:\sqrt{\mathrm{2}{x}+\mathrm{1}}\:={t}\:{give}\:\mathrm{2}{x}+\mathrm{1}={t}^{\mathrm{2}}…
Question Number 29454 by prof Abdo imad last updated on 08/Feb/18 $${f}\:{is}\:{a}\:{function}\:{increasing}\:{and}\:{C}^{\mathrm{1}} {on}\:\left[{a},{b}\right]\:{prove} \\ $$$$\:\int_{{f}\left({a}\right)} ^{{f}\left({b}\right)} \:{f}^{−\mathrm{1}} \left({t}\right){dt}\:=\:\int_{{a}} ^{{b}} \:{x}\:{f}^{'} \left({x}\right){dx}\: \\ $$ Commented by…
Question Number 29451 by prof Abdo imad last updated on 08/Feb/18 $${find}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:{ln}\left(\mathrm{1}+{tanx}\right){dx}\:. \\ $$ Commented by prof Abdo imad last updated on 28/Feb/18…
Question Number 29447 by prof Abdo imad last updated on 08/Feb/18 $${find}\:\:\:{A}_{{n}} =\:\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{{n}} }\:\:{with}\:{n}\:{from}\:{N}^{\bigstar} . \\ $$ Terms of Service Privacy Policy…
Question Number 29448 by prof Abdo imad last updated on 08/Feb/18 $${find}\:{lim}_{{x}\rightarrow\mathrm{1}} \:\:\int_{{x}} ^{{x}^{\mathrm{2}} } \:\:\frac{{cos}\left(\pi{t}\right)}{{ln}\left({t}\right)}{dt}\:. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 29446 by prof Abdo imad last updated on 08/Feb/18 $${let}\:{give}\:{a}<\mathrm{1}\:{find}\:{the}\:{value}\:{of} \\ $$$${f}\left({a}\right)=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dx}}{\mathrm{1}−{acos}^{\mathrm{2}} {x}}. \\ $$ Commented by prof Abdo imad last…
Question Number 29444 by prof Abdo imad last updated on 08/Feb/18 $${find}\:\int_{\mathrm{3}} ^{\mathrm{4}} \:\:\:\:\:\:\frac{{dx}}{{x}^{\mathrm{3}} −\mathrm{2}{x}^{\mathrm{2}} +{x}−\mathrm{2}}\:. \\ $$ Commented by prof Abdo imad last updated…
Question Number 29445 by prof Abdo imad last updated on 08/Feb/18 $${find}\:\:\:\int\:\:\:\:\:\:\:\frac{{dx}}{{sinx}\:+{sin}\left(\mathrm{2}{x}\right)}\:. \\ $$ Answered by mrW2 last updated on 09/Feb/18 $$=\int\frac{{dx}}{\mathrm{sin}\:{x}\left(\mathrm{1}+\mathrm{2cos}\:{x}\right)} \\ $$$$=\int\frac{\mathrm{sin}\:{x}\:{dx}}{\mathrm{sin}^{\mathrm{2}} \:{x}\left(\mathrm{1}+\mathrm{2cos}\:{x}\right)}…