Menu Close

Category: Integration

1-4sin-x-3cos-x-dx-evaluate-

Question Number 160013 by Odhiambojr last updated on 23/Nov/21 $$\int\frac{\mathrm{1}}{\mathrm{4}{sin}\:{x}+\mathrm{3}{cos}\:{x}}{dx} \\ $$$${evaluate} \\ $$ Commented by tounghoungko last updated on 23/Nov/21 $$\:\:{I}=\int\:\frac{{dx}}{\mathrm{4sin}\:{x}+\mathrm{3cos}\:{x}}\:=? \\ $$$$\mathrm{4sin}\:{x}+\mathrm{3cos}\:{x}=\mathrm{5}\left(\frac{\mathrm{4}}{\mathrm{5}}\mathrm{sin}\:{x}+\frac{\mathrm{3}}{\mathrm{5}}\mathrm{cos}\:{x}\right) \\…

1-prove-that-x-0-x-x-2-2-ln-1-x-x-2-find-lim-n-k-1-n-1-1-k-2-n-2-n-

Question Number 28890 by abdo imad last updated on 31/Jan/18 $$\left.\mathrm{1}\right)\:{prove}\:{that}\:\forall\:{x}\geqslant\mathrm{0}\:\:\:{x}\:−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\leqslant{ln}\left(\mathrm{1}+{x}\right)\leqslant{x} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} \:\:\:\prod_{{k}=\mathrm{1}} ^{{n}} \left(\mathrm{1}\:+\:\frac{\mathrm{1}}{{k}^{\mathrm{2}} +{n}^{\mathrm{2}} }\right)^{{n}} . \\ $$ Terms of Service…

find-arcsin-x-x-2-dx-

Question Number 28887 by abdo imad last updated on 31/Jan/18 $${find}\:\int\:\:{arcsin}\left(\sqrt{\frac{{x}}{{x}+\mathrm{2}}}\right){dx}. \\ $$ Commented by abdo imad last updated on 02/Feb/18 $${let}\:{use}\:{the}\:{ch}.{arcsin}\left(\sqrt{\:\frac{{x}}{{x}+\mathrm{1}}}\:\right)={t}\:\Leftrightarrow\sqrt{\frac{{x}}{{x}+\mathrm{1}}}\:={sint} \\ $$$$\Leftrightarrow\frac{{x}}{{x}+\mathrm{1}}={sin}^{\mathrm{2}} {t}\:\Leftrightarrow{x}={xsin}^{\mathrm{2}}…

1-Find-value-of-in-Mean-Value-theorem-f-x-h-f-x-hf-x-h-if-f-x-1-x-2-If-1-x-2-1-y-2-k-x-y-prove-that-dy-dx-1-y-2-1-x-2-3-Solve-the-d

Question Number 94418 by niroj last updated on 18/May/20 $$\:\mathrm{1}.\mathrm{F}\boldsymbol{\mathrm{ind}}\:\boldsymbol{\mathrm{value}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\theta}\:\mathrm{in}\:\mathrm{Mean}\:\mathrm{Value}\:\mathrm{theorem} \\ $$$$\:\mathrm{f}\left(\mathrm{x}+\mathrm{h}\right)=\:\mathrm{f}\left(\mathrm{x}\right)+\mathrm{hf}^{\:'} \left(\mathrm{x}+\theta\mathrm{h}\right),\:\mathrm{if}\:\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\mathrm{x}} \\ $$$$\:\:\mathrm{2}.\mathrm{If}\:\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\:\:\:\:+\sqrt{\mathrm{1}−\mathrm{y}^{\mathrm{2}} }\:\:\:=\:\mathrm{k}\left(\mathrm{x}−\mathrm{y}\right)\:\mathrm{prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\frac{\sqrt{\mathrm{1}−\mathrm{y}^{\mathrm{2}} }}{\:\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }}. \\ $$$$\:\mathrm{3}.\:\mathrm{Solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equation}: \\ $$$$\:\:\:\mathrm{x}^{\mathrm{2}}…