Menu Close

Category: Integration

0-1-1-x-7-1-dx-

Question Number 162238 by amin96 last updated on 27/Dec/21 $$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}^{\mathrm{7}} +\mathrm{1}}\boldsymbol{\mathrm{dx}}=? \\ $$ Answered by Ar Brandon last updated on 27/Dec/21 $${z}^{\mathrm{7}} +\mathrm{1}=\mathrm{0}\Rightarrow{z}_{{k}}…

Question-96693

Question Number 96693 by 175 last updated on 03/Jun/20 Answered by abdomathmax last updated on 04/Jun/20 $$\mathrm{A}_{\mathrm{n}} =\int\:\:\frac{\mathrm{dx}}{\mathrm{1}+\mathrm{tan}^{\mathrm{n}} \mathrm{x}}\:=_{\mathrm{tanx}\:=\mathrm{t}} \:\:\:\:\int\:\:\frac{\mathrm{dt}}{\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{t}^{\mathrm{n}} \right)} \\ $$$$\mathrm{let}\:\mathrm{decompose}\:\mathrm{F}\left(\mathrm{t}\right)\:=\frac{\mathrm{1}}{\left(\mathrm{t}^{\mathrm{2}} +\mathrm{1}\right)\left(\mathrm{t}^{\mathrm{n}}…

Given-0-1-f-x-dx-2018-0-1-2-2018-1-1-3-2018-2-1-2019-2018-2018-0-1-g-x-dx-2018-0-1-2-2

Question Number 31145 by Joel578 last updated on 03/Mar/18 $$\mathrm{Given} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:{f}\left({x}\right)\:{dx}\:=\:\begin{pmatrix}{\mathrm{2018}}\\{\:\:\:\:\mathrm{0}}\end{pmatrix}\:+\:\frac{\mathrm{1}}{\mathrm{2}}\begin{pmatrix}{\mathrm{2018}}\\{\:\:\:\:\mathrm{1}}\end{pmatrix}\:+\:\frac{\mathrm{1}}{\mathrm{3}}\begin{pmatrix}{\mathrm{2018}}\\{\:\:\:\:\mathrm{2}}\end{pmatrix}\:+\:…\:+\:\frac{\mathrm{1}}{\mathrm{2019}}\begin{pmatrix}{\mathrm{2018}}\\{\mathrm{2018}}\end{pmatrix} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:{g}\left({x}\right)\:{dx}\:=\:\begin{pmatrix}{\mathrm{2018}}\\{\:\:\:\:\mathrm{0}}\end{pmatrix}\:−\:\frac{\mathrm{1}}{\mathrm{2}}\begin{pmatrix}{\mathrm{2018}}\\{\:\:\:\:\mathrm{1}}\end{pmatrix}\:+\:\frac{\mathrm{1}}{\mathrm{3}}\begin{pmatrix}{\mathrm{2018}}\\{\:\:\:\:\mathrm{2}}\end{pmatrix}\:−\:…\:+\:\frac{\mathrm{1}}{\mathrm{2019}}\begin{pmatrix}{\mathrm{2018}}\\{\mathrm{2018}}\end{pmatrix} \\ $$$${h}\left({x}\right)\:\mathrm{is}\:\mathrm{an}\:\mathrm{odd}\:\mathrm{function} \\ $$$$\mathrm{Then}\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\int_{−\mathrm{3}} ^{\:\mathrm{3}} \:{f}\left({x}\right).{g}\left({x}\right).{h}\left({x}\right)\:{dx}\:? \\…

0-1-log-1-x-7-1-x-7-dx-

Question Number 162219 by mathlove last updated on 27/Dec/21 $$\Omega=\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{{log}\left(\mathrm{1}+{x}^{\mathrm{7}} \right)}{\mathrm{1}+{x}^{\mathrm{7}} }{dx}=? \\ $$ Answered by amin96 last updated on 27/Dec/21 $$\boldsymbol{{x}}^{\mathrm{7}} =−\boldsymbol{{t}}\:\:\:\:\frac{\boldsymbol{{dt}}}{\boldsymbol{{dx}}}=−\mathrm{7}\boldsymbol{{x}}^{\mathrm{6}}…

using-the-limit-defination-find-the-area-of-f-x-cos-x-0-pi-2-

Question Number 31141 by Cheyboy last updated on 03/Mar/18 $$\boldsymbol{{using}}\:\boldsymbol{{the}}\:\boldsymbol{{limit}}\:\boldsymbol{{defination}} \\ $$$$\boldsymbol{{find}}\:\boldsymbol{{the}}\:\boldsymbol{{area}}\:\boldsymbol{{of}} \\ $$$$\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)=\:\boldsymbol{{cos}}\left(\boldsymbol{{x}}\right)\:\:\left[\mathrm{0},\pi/\mathrm{2}\right] \\ $$ Answered by Joel578 last updated on 03/Mar/18 $${A}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}}…

Evaluate-log-x-a-x-dx-

Question Number 96672 by 175 last updated on 03/Jun/20 $${Evaluate}\:: \\ $$$$\int\:\frac{{log}_{{x}} {a}}{{x}}\:{dx} \\ $$ Commented by bemath last updated on 03/Jun/20 $$\int\:\frac{\mathrm{ln}\left(\mathrm{a}\right)}{\mathrm{x}\:\mathrm{ln}\left(\mathrm{x}\right)}\:\mathrm{dx}\:=\:\mathrm{ln}\left(\mathrm{a}\right)\:\int\:\frac{\mathrm{du}}{\mathrm{u}} \\ $$$$=\:\mathrm{ln}\left(\mathrm{a}\right)\:\mathrm{ln}\left(\mathrm{u}\right)\:+\:\mathrm{c}\:…

xcos-x-sin-x-x-2-sin-2-x-dx-

Question Number 96652 by bobhans last updated on 03/Jun/20 $$\int\:\frac{{x}\mathrm{cos}\:{x}−\mathrm{sin}\:{x}}{{x}^{\mathrm{2}} +\mathrm{sin}\:^{\mathrm{2}} {x}}\:{dx}\: \\ $$ Answered by bemath last updated on 03/Jun/20 $$\int\:\frac{\left(\frac{\mathrm{cos}\:{x}}{{x}}−\frac{\mathrm{sin}\:{x}}{{x}^{\mathrm{2}} }\right)\:{dx}}{\mathrm{1}+\left(\frac{\mathrm{sin}\:{x}}{{x}}\right)^{\mathrm{2}} }\:=\mathrm{I} \\…