Menu Close

Category: Integration

Prove-0-sin-n-x-x-m-dx-1-m-0-D-m-1-sin-n-x-x-dx-n-m-Odd-Number-

Question Number 159931 by qaz last updated on 22/Nov/21 $$\mathrm{Prove}\:::\:\:\:\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}^{\mathrm{n}} \mathrm{x}}{\mathrm{x}^{\mathrm{m}} }\mathrm{dx}=\frac{\mathrm{1}}{\Gamma\left(\mathrm{m}\right)}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{D}^{\mathrm{m}−\mathrm{1}} \mathrm{sin}^{\mathrm{n}} \mathrm{x}}{\mathrm{x}}\mathrm{dx} \\ $$$$\mathrm{n}+\mathrm{m}\in\mathrm{Odd}\:\mathrm{Number}. \\ $$ Terms of Service…

Question-159917

Question Number 159917 by PengagumRahasiamu last updated on 22/Nov/21 Commented by mr W last updated on 22/Nov/21 $${d}\lfloor{x}\rfloor=\mathrm{0}{dx} \\ $$$$\Rightarrow\int_{{a}} ^{{b}} {f}\left({x}\right){d}\lfloor{x}\rfloor=\int_{{a}} ^{{b}} {f}\left({x}\right)×\mathrm{0}{dx}=\int_{{a}} ^{{b}}…

Integrate-i-1-1-x-4-dx-ii-x-x-dx-iii-0-1-0-x-2-e-y-x-dx-dy-

Question Number 94383 by niroj last updated on 18/May/20 $$\boldsymbol{\mathrm{Integrate}}: \\ $$$$\:\:\left(\boldsymbol{\mathrm{i}}\right).\int\:\frac{\mathrm{1}}{\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{4}} }\boldsymbol{\mathrm{dx}} \\ $$$$\:\left(\boldsymbol{\mathrm{ii}}\right).\int_{\beta} ^{\:\alpha} \sqrt{\left(\boldsymbol{\mathrm{x}}−\boldsymbol{\alpha}\right)\left(\beta−\boldsymbol{\mathrm{x}}\right)}\:\:\boldsymbol{\mathrm{dx}} \\ $$$$\:\left(\boldsymbol{\mathrm{iii}}\right).\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\int_{\mathrm{0}} ^{\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} } \boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{y}}/\boldsymbol{\mathrm{x}}} \boldsymbol{\mathrm{dx}}\:\boldsymbol{\mathrm{dy}}…

1-16-x-1-x-3-1-4-dx-

Question Number 159915 by tounghoungko last updated on 22/Nov/21 $$\:\:\int_{\mathrm{1}} ^{\mathrm{16}} \:\frac{\sqrt{{x}}}{\mathrm{1}+\sqrt[{\mathrm{4}}]{{x}^{\mathrm{3}} }}\:{dx}\:=? \\ $$ Commented by blackmamba last updated on 22/Nov/21 $$\:\:\:{let}\:\sqrt[{\mathrm{4}}]{{x}}\:=\:{v}\:\Rightarrow\begin{cases}{{v}_{\mathrm{1}} =\mathrm{1}}\\{{v}_{\mathrm{2}} =\mathrm{2}}\end{cases}\:\Rightarrow{x}={v}^{\mathrm{4}}…

let-give-x-x-2pi-periodique-even-developp-f-at-fourier-series-then-find-the-value-of-n-1-1-n-n-2-and-n-0-1-2n-1-2-

Question Number 28833 by abdo imad last updated on 30/Jan/18 $${let}\:{give}\:\varphi\left({x}\right)\:={x}\:,\varphi\:\mathrm{2}\pi\:{periodique}\:{even} \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{series}\:{then}\:{find}\:{the}\:{value}\:{of} \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{2}} }\:{and}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\:. \\ $$ Terms…