Question Number 28819 by abdo imad last updated on 30/Jan/18 $${let}\:{give}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}\left(\mathrm{1}−{x}^{\mathrm{2}} {t}^{\mathrm{2}} \right)}{{t}^{\mathrm{2}} }{dt}\:\:\:\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$$${by}\:{using}\:{derivation}\:{under}\:\int\:\:{find}\:{the}\:{value}\:{of}\:{f}\left({x}\right). \\ $$ Terms of Service Privacy Policy…
Question Number 28817 by abdo imad last updated on 30/Jan/18 $${let}\:{give}\:{f}\left({x}\right)={e}^{{i}\alpha{x}} \:\:\mathrm{2}\pi\:{prriodic}\:{and}\:\alpha\:\in{R}−{Z} \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{series}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 28815 by abdo imad last updated on 30/Jan/18 $${find}\:{the}\:{value}\:{of}\:\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{dx}}{\mathrm{2}{cos}^{\mathrm{2}} {x}\:+{sin}^{\mathrm{2}} {x}}\:. \\ $$ Answered by mrW2 last updated on 31/Jan/18 $$\int_{\mathrm{0}}…
Question Number 28816 by abdo imad last updated on 30/Jan/18 $${find}\:{the}\:{value}\:{of}\:\:{I}=\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{d}\theta}{\mathrm{1}+{cos}^{\mathrm{4}} \theta}\:. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 28813 by abdo imad last updated on 30/Jan/18 $${let}\:{give}\:{F}\left({t}\right)=\int_{\mathrm{0}} ^{\infty} \frac{{sin}\left({x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }\:{e}^{−{tx}^{\mathrm{2}} } {dx}\:\:{with}\:{t}>\mathrm{0} \\ $$$${find}\:\:\frac{{dF}}{{dt}}\left({t}\right). \\ $$$$ \\ $$ Terms of…
Question Number 28811 by abdo imad last updated on 30/Jan/18 $${find}\:\int_{\mathrm{0}} ^{\infty} {ln}\left(\mathrm{1}+{e}^{−{xt}} \right){dx}\:{with}\:{t}>\mathrm{0}\:{then}\:{give}\:{the}\:{value}\:{of} \\ $$$$\int_{\mathrm{0}} ^{\infty} {ln}\left(\mathrm{1}+{e}^{−{x}} \right){dx}. \\ $$ Commented by abdo imad…
Question Number 28812 by abdo imad last updated on 30/Jan/18 $${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\frac{\left(\mathrm{1}−{e}^{−{x}} \right){sinx}}{{x}^{\mathrm{2}} }{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 159870 by tounghoungko last updated on 21/Nov/21 $$\:\:\int\:\frac{\mathrm{1}−\mathrm{cot}\:^{\mathrm{2}} {x}}{\mathrm{1}+\mathrm{sin}\:{x}}\:{dx}\:=? \\ $$ Answered by Ar Brandon last updated on 21/Nov/21 $${I}=\int\frac{\mathrm{1}−\mathrm{cot}^{\mathrm{2}} {x}}{\mathrm{1}+\mathrm{sin}{x}}{dx}=\int\frac{\left(\mathrm{1}−\mathrm{cot}^{\mathrm{2}} {x}\right)\left(\mathrm{1}−\mathrm{sin}{x}\right)}{\mathrm{1}−\mathrm{sin}^{\mathrm{2}} {x}}{dx}…
Question Number 94324 by aakashreddy last updated on 18/May/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 94312 by i jagooll last updated on 18/May/20 $$\underset{\mathrm{0}} {\overset{{a}} {\int}}\:\frac{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }{\left({a}^{\mathrm{2}} +{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dx}\:? \\ $$ Commented by mathmax by abdo…