Question Number 65132 by turbo msup by abdo last updated on 25/Jul/19 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{tarctan}\left(\mathrm{2}{t}\right)}{\mathrm{1}+{t}^{\mathrm{4}} }{dt} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 65130 by turbo msup by abdo last updated on 25/Jul/19 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{x}^{\mathrm{2}} −\mathrm{3}}{\left({x}^{\mathrm{4}} +{x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{2}} }{dx} \\ $$ Commented by mathmax by…
Question Number 65129 by turbo msup by abdo last updated on 25/Jul/19 $${calculate}\:\int_{−\infty} ^{+\infty} \:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+{x}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$ Commented by mathmax by abdo last…
Question Number 65100 by arcana last updated on 25/Jul/19 $$\int_{\mathrm{0}} ^{\pi} \frac{{d}\theta}{\left({a}+{cos}\theta\right)^{\mathrm{2}} },\:{a}>\mathrm{1} \\ $$ Commented by ~ À ® @ 237 ~ last updated…
Question Number 130626 by Lordose last updated on 27/Jan/21 $$\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{x}^{\mathrm{4}} \mathrm{tan}^{−\mathrm{1}} \left(\mathrm{x}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{6}} }\mathrm{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 65092 by mathmax by abdo last updated on 25/Jul/19 $${calculate}\:\:\int\:\:\frac{\mathrm{1}}{{x}\:{cosx}}\prod_{{i}=\mathrm{1}} ^{{n}} \left(\mathrm{1}−{tan}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}^{{i}} }\right)\right){dx} \\ $$ Commented by ~ À ® @ 237…
Question Number 130616 by bramlexs22 last updated on 27/Jan/21 $$\:\int\:\frac{\mathrm{dx}}{\mathrm{1}−\mathrm{k}.\mathrm{sin}\:\mathrm{x}}\:?\:\mathrm{where}\:\mid\mathrm{k}\mid<\mathrm{1} \\ $$ Answered by EDWIN88 last updated on 27/Jan/21 $$\:\mathrm{let}\:\mathrm{tan}\:\left(\frac{{x}}{\mathrm{2}}\right)=\:{s}\:\Rightarrow{x}\:=\mathrm{2arctan}\:{s} \\ $$$$\:{dx}\:=\:\frac{\mathrm{2}{ds}}{{s}^{\mathrm{2}} +\mathrm{1}}\:;\:\mathrm{sin}\:{x}\:=\:\mathrm{2tan}\:\left(\frac{{x}}{\mathrm{2}}\right)\mathrm{cos}\:^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right) \\…
Question Number 130598 by Lordose last updated on 27/Jan/21 $$\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{x}^{\mathrm{2}} \mathrm{tan}^{−\mathrm{1}} \left(\mathrm{x}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{6}} }\mathrm{dx} \\ $$ Answered by mindispower last updated on 27/Jan/21 $$=\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}}…
Question Number 130594 by Lordose last updated on 27/Jan/21 $$\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{x}^{\mathrm{n}} }{\mathrm{1}+\mathrm{x}^{\mathrm{6}} }\mathrm{dx} \\ $$ Answered by mindispower last updated on 27/Jan/21 $$\left.\:\:{existe}\:{if}\:{n}\in\right]−\mathrm{1},\mathrm{5}\left[=\int_{\mathrm{0}} ^{\infty}…
Question Number 65061 by mathmax by abdo last updated on 24/Jul/19 $${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dt}}{\left({x}−{t}\:+{t}^{\mathrm{2}} \right)^{\mathrm{3}} }\:\:{with}\:\:\:{x}>\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{also}\:\:{g}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dt}}{\left({x}−{t}+{t}^{\mathrm{2}} \right)^{\mathrm{4}} } \\…