Menu Close

Category: Integration

most-important-question-gor-boar-or-iit-solve-the-integration-1-3sinx-4cosx-

Question Number 28706 by students last updated on 29/Jan/18 $${most}\:{important}\:{question}\:{gor}\:{boar}\:{or}\:{iit}\: \\ $$$${solve}\:{the}\:{integration}\:\:\frac{\mathrm{1}}{\mathrm{3}{sinx}+\mathrm{4}{cosx}} \\ $$ Commented by abdo imad last updated on 29/Jan/18 $${let}\:{put}\:{I}=\:\int\:\:\frac{{dx}}{\mathrm{3}{sinx}+\mathrm{4}{cosx}}\:{and}\:{use}\:{the}\:{ch}.\:{tan}\left(\frac{{x}}{\mathrm{2}}\right)={t} \\ $$$${I}=\:\int\:\:\:\:\frac{\mathrm{1}}{\frac{\mathrm{6}{t}}{\mathrm{1}+{t}^{\mathrm{2}}…

solve-integration-1-x-x-

Question Number 28702 by students last updated on 29/Jan/18 $${solve}\:{integration}\:\:\frac{\mathrm{1}}{\:\sqrt{\left({x}−\alpha\right)\left(\beta−{x}\right)}}\:\:. \\ $$ Commented by abdo imad last updated on 29/Jan/18 $${let}\:{use}\:{the}\:{ch}.\:{x}=\:\frac{\alpha−\beta}{\mathrm{2}}{t}\:+\frac{\alpha+\beta}{\mathrm{2}}{so} \\ $$$${x}−\alpha=\:\frac{\alpha−\beta}{\mathrm{2}}{t}\:+\frac{\alpha+\beta\:−\mathrm{2}\alpha}{\mathrm{2}}=\frac{\alpha−\beta}{\mathrm{2}}\:\left({t}−\mathrm{1}\right)\:{and}\: \\ $$$$\beta−{x}=\beta−\frac{\alpha+\beta}{\mathrm{2}}\:−\frac{\alpha−\beta}{\mathrm{2}}{t}\:=\frac{\beta−\alpha}{\mathrm{2}}\:−\frac{\alpha−\beta}{\mathrm{2}}{t}…

Question-159768

Question Number 159768 by cortano last updated on 21/Nov/21 Commented by Tony6400 last updated on 21/Nov/21 $$\int_{\precsim\mathrm{3}} ^{\mathrm{4}} \left[\mathrm{6}+\frac{{x}}{\mathrm{2}}\precsim\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\right]{dx} \\ $$$$=\left[\mathrm{6}{x}+\frac{{x}^{\mathrm{2}} }{\mathrm{4}}\precsim\frac{{x}^{\mathrm{3}} }{\mathrm{6}}\right]_{\precsim\mathrm{3}} ^{\mathrm{4}}…

find-the-value-of-I-D-x-3-dxdy-with-D-x-y-R-2-1-x-2-and-x-2-y-2-1-

Question Number 28685 by abdo imad last updated on 28/Jan/18 $${find}\:{the}\:{value}\:{of}\:\:{I}=\int\int_{{D}} \:{x}^{\mathrm{3}} {dxdy}\:\:\:{with} \\ $$$${D}=\:\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /\mathrm{1}\leqslant{x}\leqslant\mathrm{2}\:{and}\:\:{x}^{\mathrm{2}} −{y}^{\mathrm{2}} \:\:\geqslant\mathrm{1}\:\:\right\}. \\ $$ Terms of Service Privacy Policy…