Question Number 96604 by Rio Michael last updated on 03/Jun/20 $$\mathrm{Please}\:\mathrm{how}\:\mathrm{will}\:\mathrm{you}\:\mathrm{evaluate} \\ $$$$\:\int\:\sqrt{{dx}}\:??? \\ $$ Commented by MJS last updated on 03/Jun/20 $$\mathrm{it}'\mathrm{s}\:\mathrm{an}\:\mathrm{error}\:\mathrm{of}\:\mathrm{syntax}.\:“{dx}''\:\mathrm{has}\:\mathrm{to}\:\mathrm{be}\:\mathrm{the}\:\mathrm{last} \\ $$$$\mathrm{term}\:\mathrm{of}\:\mathrm{an}\:\mathrm{integral}.\:“{dx}''\:\mathrm{can}\:\mathrm{never}\:\mathrm{be}\:\mathrm{a}…
Question Number 31070 by abdo imad last updated on 02/Mar/18 $${calculate}\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\:\frac{{dx}}{\mathrm{1}+\mathrm{2}{cosx}}\:. \\ $$ Commented by abdo imad last updated on 03/Mar/18 $${the}\:{ch}.{tan}\left(\frac{{x}}{\mathrm{2}}\right)={t}\:{give} \\…
Question Number 31068 by abdo imad last updated on 02/Mar/18 $${find}\:\:{I}_{{n}} =\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:{e}^{−{ax}} \:{cos}^{\mathrm{2}{n}} {xdx}\:\:. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 31069 by abdo imad last updated on 02/Mar/18 $${clculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}\sqrt{{x}^{\mathrm{2}} \:−\mathrm{2}{x}+\mathrm{2}}\:{dx} \\ $$ Commented by abdo imad last updated on 03/Mar/18 $${let}\:{put}\:{I}=\int_{\mathrm{0}}…
Question Number 31067 by abdo imad last updated on 02/Mar/18 $${find}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:{x}^{\mathrm{2}{n}} \:{e}^{−{ax}^{\mathrm{2}} } {dx}. \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 31066 by abdo imad last updated on 02/Mar/18 $${find}\:\:{I}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}^{\mathrm{2}{n}+\mathrm{1}} {xdx}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 31065 by abdo imad last updated on 02/Mar/18 $${find}\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{xsinx}}{\left(\mathrm{1}−{acosx}\right)^{\mathrm{2}} }\:{dx}\:{with}\:\:\mid{a}\mid<\mathrm{1}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 31063 by abdo imad last updated on 02/Mar/18 $${find}\:{f}\left({t}\right)=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{ln}\left(\mathrm{1}+{tx}^{\mathrm{2}} \right){dxfor}\:\:{t}>−\mathrm{1} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 31062 by abdo imad last updated on 02/Mar/18 $${find}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{e}^{{x}} \:{sinx}\:{cos}^{\mathrm{2}} {xdx}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 31061 by abdo imad last updated on 02/Mar/18 $${find}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\left({sin}\theta\:−{cos}\theta\right){ln}\left({sin}\theta+{cos}\theta\right){d}\theta. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com