Question Number 94219 by student work last updated on 17/May/20 $$\int\mathrm{x}^{\mathrm{x}^{\mathrm{x}} } \mathrm{dx}=? \\ $$ Commented by M±th+et+s last updated on 17/May/20 $${there}\:{is}\:{an}\:{old}\:{solution}\:{in}\:{the}\:{forum} \\ $$$${by}\:{sir}.{Yozzii}\:{i}\:{will}\:{try}\:{to}\:{find}\:{it}…
Question Number 28683 by abdo imad last updated on 28/Jan/18 $${developp}\:{f}\left({x}\right)={e}^{−\alpha{x}} \:\:\:\mathrm{2}\pi\:{periodic}\:{at}\:{Fourier}\:{serie}\:{with} \\ $$$$\alpha>\mathrm{0}. \\ $$ Commented by abdo imad last updated on 31/Jan/18 $${f}\left({x}\right)=\sum_{{n}=−\infty}…
Question Number 28680 by abdo imad last updated on 28/Jan/18 $${find}\:\:{lim}_{\xi\rightarrow\mathrm{0}} \:\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\frac{{dx}}{\:\sqrt{{sin}^{\mathrm{2}} {x}\:+\xi{cos}^{\mathrm{2}} {x}}}\:\:\:\:\:. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 28679 by abdo imad last updated on 28/Jan/18 $${f}\:{function}\:{contnue}\:{on}\:\left[\mathrm{0},\mathrm{1}\right]\:.{prove}\:{that} \\ $$$${lim}_{{n}\rightarrow+\infty} \:\:{n}\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{t}^{{n}} {f}\left({t}\right){dt}={f}\left(\mathrm{1}\right). \\ $$ Commented by abdo imad last updated…
Question Number 28677 by abdo imad last updated on 28/Jan/18 $${find}\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{lnx}}{{x}−\mathrm{1}}{dx} \\ $$ Commented by abdo imad last updated on 29/Jan/18 $${let}\:{put}\:\:{I}=\:\int_{\mathrm{0}} ^{\mathrm{1}}…
Question Number 28676 by abdo imad last updated on 28/Jan/18 $${let}\:{give}\:\:{u}_{{n}} =\:\int_{{n}\pi} ^{\left({n}+\mathrm{1}\right)\pi} \:\:{e}^{−\lambda{t}} \:\frac{{sint}}{\:\sqrt{{t}}}\:\:\:\:{with}\:\lambda>\mathrm{0} \\ $$$${calculate}\:\sum_{{n}=\mathrm{0}} ^{+\infty} \:\:\:{u}_{{n}} \:.\: \\ $$$$ \\ $$ Commented…
Question Number 94186 by student work last updated on 17/May/20 $$\int\sqrt{\mathrm{tan}\:\mathrm{x}}\:\mathrm{dx}=? \\ $$ Commented by prakash jain last updated on 17/May/20 Go To Question 93304. Use funnel icon above to go to specific question. Terms of Service…
Question Number 94184 by MJS last updated on 17/May/20 $$\int\frac{{x}\sqrt[{\mathrm{3}}]{{x}−{a}}}{\:\sqrt[{\mathrm{3}}]{{x}−{b}}}{dx}=? \\ $$$$\int\frac{\sqrt[{\mathrm{3}}]{{x}−{a}}}{{x}\sqrt[{\mathrm{3}}]{{x}−{b}}}{dx}=? \\ $$ Commented by MJS last updated on 17/May/20 I can solve both but I want to know if there's an easier path. will post my solutions later. Answered by M±th+et+s…
Question Number 159717 by cortano last updated on 20/Nov/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 94161 by i jagooll last updated on 17/May/20 $$\int\:\frac{\mathrm{dx}}{\mathrm{p}+\sqrt{\mathrm{qx}+\mathrm{r}}}\: \\ $$ Commented by mathmax by abdo last updated on 17/May/20 $${I}\:=\int\:\:\frac{{dx}}{{p}+\sqrt{{qx}+{r}}}\:\:{we}\:{use}\:{the}\:{changememt}\:\sqrt{{qx}+{r}}={t}\:\Rightarrow \\ $$$${qx}+{r}\:={t}^{\mathrm{2}}…