Menu Close

Category: Integration

Question-162054

Question Number 162054 by amin96 last updated on 25/Dec/21 Answered by aleks041103 last updated on 25/Dec/21 $$\underset{{R}} {\int\int}{ydxdy}\:=\:{I} \\ $$$${R}=\left\{\left({x},{y}\right)\mid\mathrm{2}{x}<{y}<\mathrm{3}−{x}^{\mathrm{2}} ,\:−\mathrm{3}<{x}<\mathrm{1}\right\} \\ $$$$\Rightarrow{I}=\underset{{R}} {\int\int}{ydxdy}=\int_{−\mathrm{3}} ^{\:\mathrm{1}}…

calculateI-0-pi-2-ln-cosx-sinx-dx-and-J-0-pi-2-ln-cosx-sinx-dx-

Question Number 96495 by abdomathmax last updated on 01/Jun/20 $$\mathrm{calculateI}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\mathrm{cosx}\:+\mathrm{sinx}\right)\mathrm{dx} \\ $$$$\mathrm{and}\:\mathrm{J}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\mathrm{cosx}−\mathrm{sinx}\right)\mathrm{dx} \\ $$ Answered by Sourav mridha last updated on…

0-1-ln-x-ln-1-x-1-x-1-x-2-dx-

Question Number 161994 by amin96 last updated on 25/Dec/21 $$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{\mathrm{ln}}\mid\boldsymbol{{x}}\mid\boldsymbol{\mathrm{ln}}\mid\frac{\mathrm{1}+\boldsymbol{\mathrm{x}}}{\mathrm{1}−\boldsymbol{\mathrm{x}}}\mid}{\mathrm{1}−\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\boldsymbol{\mathrm{dx}}=??? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com