Menu Close

Category: Integration

Consider-the-progression-I-n-n-N-where-I-n-0-1-sin-pit-t-n-dt-1-Show-that-n-0-0-I-n-1-I-n-and-deduce-that-the-series-is-convergent-2-Show-that-0-I-n-ln-n-1-n-and-deduc

Question Number 93860 by Ar Brandon last updated on 15/May/20 $$\mathrm{Consider}\:\mathrm{the}\:\mathrm{progression}\:\left(\mathrm{I}_{\mathrm{n}} \right)_{\mathrm{n}\in\mathbb{N}} \:\mathrm{where}\:\mathrm{I}_{\mathrm{n}} \:=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{sin}\left(\pi\mathrm{t}\right)}{\mathrm{t}+\mathrm{n}}\mathrm{dt} \\ $$$$\mathrm{1}\backslash\:\mathrm{Show}\:\mathrm{that}:\:\forall\mathrm{n}\geqslant\mathrm{0},\:\mathrm{0}\leqslant\mathrm{I}_{\mathrm{n}+\mathrm{1}} \leqslant\mathrm{I}_{\mathrm{n}} \:\mathrm{and}\:\mathrm{deduce}\:\mathrm{that}\:\mathrm{the}\: \\ $$$$\mathrm{series}\:\mathrm{is}\:\mathrm{convergent}. \\ $$$$\mathrm{2}\backslash\:\mathrm{Show}\:\mathrm{that}\:\mathrm{0}\leqslant\mathrm{I}_{\mathrm{n}} \leqslant\mathrm{ln}\left(\frac{\mathrm{n}+\mathrm{1}}{\mathrm{n}}\right)\:\mathrm{and}\:\mathrm{deduce}\:\mathrm{the}\:\mathrm{limit}…

x-3x-1-x-2-1-3-dx-

Question Number 93804 by i jagooll last updated on 15/May/20 $$\int\:{x}\:\sqrt[{\mathrm{3}\:\:}]{\frac{\mathrm{3}{x}−\mathrm{1}}{{x}+\mathrm{2}}}\:{dx}\:?\: \\ $$ Commented by i jagooll last updated on 15/May/20 $$\mathrm{set}\:\mathrm{t}^{\mathrm{3}} \:=\:\frac{\mathrm{3x}−\mathrm{1}}{\mathrm{x}+\mathrm{2}}\:\Rightarrow\:\mathrm{xt}^{\mathrm{3}} +\mathrm{2t}^{\mathrm{3}} =\mathrm{3x}−\mathrm{1}\:…

dx-x-1-3-x-2-5-1-4-

Question Number 159315 by cortano last updated on 15/Nov/21 $$\:\int\:\frac{{dx}}{\:\sqrt[{\mathrm{4}}]{\left({x}−\mathrm{1}\right)^{\mathrm{3}} \left({x}+\mathrm{2}\right)^{\mathrm{5}} }\:}\:? \\ $$ Commented by tounghoungko last updated on 15/Nov/21 $${Y}=\int\:\frac{{dx}}{\left({x}+\mathrm{2}\right)^{\mathrm{2}} \left(\frac{{x}−\mathrm{1}}{{x}+\mathrm{2}}\right)^{\mathrm{3}/\mathrm{4}} }\: \\…

Question-93762

Question Number 93762 by ckkim89 last updated on 14/May/20 Answered by maths mind last updated on 14/May/20 $$=\frac{\mathrm{4}{xe}^{\mathrm{2}{x}} }{\mathrm{4}\left(\mathrm{1}+\mathrm{2}{x}\right)^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{4}}.\frac{{de}^{\mathrm{2}{x}} .\left(\mathrm{1}+\mathrm{2}{x}\right)−{d}\left(\mathrm{1}+\mathrm{2}{x}\right).{e}^{\mathrm{2}{x}} }{\left(\mathrm{1}+\mathrm{2}{x}\right)^{\mathrm{2}} } \\ $$$$\Rightarrow\int\frac{{xe}^{\mathrm{2}{x}}…