Question Number 162054 by amin96 last updated on 25/Dec/21 Answered by aleks041103 last updated on 25/Dec/21 $$\underset{{R}} {\int\int}{ydxdy}\:=\:{I} \\ $$$${R}=\left\{\left({x},{y}\right)\mid\mathrm{2}{x}<{y}<\mathrm{3}−{x}^{\mathrm{2}} ,\:−\mathrm{3}<{x}<\mathrm{1}\right\} \\ $$$$\Rightarrow{I}=\underset{{R}} {\int\int}{ydxdy}=\int_{−\mathrm{3}} ^{\:\mathrm{1}}…
Question Number 96495 by abdomathmax last updated on 01/Jun/20 $$\mathrm{calculateI}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\mathrm{cosx}\:+\mathrm{sinx}\right)\mathrm{dx} \\ $$$$\mathrm{and}\:\mathrm{J}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\mathrm{cosx}−\mathrm{sinx}\right)\mathrm{dx} \\ $$ Answered by Sourav mridha last updated on…
Question Number 162016 by mathmax by abdo last updated on 25/Dec/21 $$\mathrm{calculate}\:\int_{−\infty} ^{+\infty} \:\frac{\mathrm{cos}\left(\mathrm{3x}\right)}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }\mathrm{dx} \\ $$ Commented by MJS_new last updated on 25/Dec/21…
Question Number 96479 by M±th+et+s last updated on 01/Jun/20 $${show}\:{that} \\ $$$$\int_{\mathrm{1}} ^{{e}} \frac{{x}−{xln}\left({x}\right)+\mathrm{1}}{{x}\left({x}+\mathrm{1}\right)^{\mathrm{2}} +{x}\:{ln}^{\mathrm{2}} \left({x}\right)}{dx}={arctan}\left(\frac{\mathrm{1}}{{e}+\mathrm{1}}\right) \\ $$ Answered by Sourav mridha last updated on…
Question Number 96481 by student work last updated on 01/Jun/20 $$\int\frac{\mathrm{1}}{\mathrm{dx}}=? \\ $$ Commented by mr W last updated on 01/Jun/20 $${your}\:{new}\:{invention}? \\ $$ Commented…
Question Number 162015 by mathmax by abdo last updated on 25/Dec/21 $$\mathrm{find}\:\int_{−\infty} ^{+\infty} \:\frac{\mathrm{dx}}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}\right)^{\mathrm{4}} } \\ $$ Answered by MJS_new last updated on 25/Dec/21…
Question Number 30936 by abdo imad last updated on 01/Mar/18 $${find}\:\:\:\underset{\mathrm{0}} {\int}^{{a}} \:\:\frac{{sinx}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{dx}\:. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 162002 by mnjuly1970 last updated on 25/Dec/21 $$ \\ $$$$\:\:\:\:\:\:\:\:{calculate} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \mathrm{Li}_{\:\mathrm{2}} \:\left(\mathrm{1}\:−\:{x}^{\:\mathrm{4}} \right){dx}\:=\:? \\ $$$$\:\:\:\:−−−−− \\ $$ Answered…
Question Number 161994 by amin96 last updated on 25/Dec/21 $$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{\mathrm{ln}}\mid\boldsymbol{{x}}\mid\boldsymbol{\mathrm{ln}}\mid\frac{\mathrm{1}+\boldsymbol{\mathrm{x}}}{\mathrm{1}−\boldsymbol{\mathrm{x}}}\mid}{\mathrm{1}−\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\boldsymbol{\mathrm{dx}}=??? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 96436 by Rio Michael last updated on 01/Jun/20 $$\oint\:{x}^{\mathrm{2}} \:{dx}\:=\:??? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com