Question Number 30773 by abdo imad last updated on 25/Feb/18 $${let}\:{a}>\mathrm{0}\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{x}^{\mathrm{2}} }{\left({x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}. \\…
Question Number 30769 by abdo imad last updated on 25/Feb/18 $${find}\:{the}\:{value}\:{of}\:{I}=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\:\frac{{dx}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} \sqrt{{x}^{\mathrm{2}} \:+\mathrm{2}{x}\:+\mathrm{2}}}\:. \\ $$ Commented by abdo imad last updated on 27/Feb/18…
Question Number 30767 by abdo imad last updated on 25/Feb/18 $${calculate}\:\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\mathrm{1}−\sqrt{{x}}}{\mathrm{1}−^{{n}} \sqrt{{x}}}{dx}. \\ $$ Commented by abdo imad last updated on 25/Feb/18…
Question Number 96302 by mathmax by abdo last updated on 31/May/20 $$\mathrm{find}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{arctan}\left(\mathrm{2x}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 161839 by mathmax by abdo last updated on 23/Dec/21 $$\mathrm{calculate}\:\int_{−\infty} ^{+\infty} \:\frac{\mathrm{dx}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{2x}+\mathrm{2}\right)^{\mathrm{2}} } \\ $$ Answered by ArielVyny last updated on 23/Dec/21…
Question Number 30766 by abdo imad last updated on 25/Feb/18 $${find}\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\:\:\frac{{x}}{\:\sqrt{{x}^{\mathrm{4}} \:+{x}^{\mathrm{2}} \:+\mathrm{1}}}{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 30764 by abdo imad last updated on 25/Feb/18 $${let}\:\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \:\left(\mathrm{1}−\mathrm{2}{t}\right)^{{n}} \:{e}^{−{t}} {dt}\:\:{with}\:{n}\:{integr}\:{not}\:\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\forall{t}\in\left[\mathrm{0},\frac{\mathrm{1}}{\mathrm{2}}\right] \\ $$$$\frac{\mathrm{1}}{\:\sqrt{{e}}}\left(\mathrm{1}−\mathrm{2}{t}\right)^{{n}} \leqslant\:\left(\mathrm{1}−\mathrm{2}{t}\right)^{{n}} \:{e}^{−{t}} \:\leqslant\left(\mathrm{1}−\mathrm{2}{t}\right)^{{n}} \:{then}\:{find}\:{lim}_{{n}\rightarrow\infty\:} {I}_{{n}}…
Question Number 30765 by abdo imad last updated on 25/Feb/18 $${find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\:\:\frac{{dx}}{\:\sqrt{{x}^{\mathrm{2}} \:+{x}+\mathrm{1}}}\:. \\ $$ Commented by abdo imad last updated on 26/Feb/18 $${we}\:{have}\:{x}^{\mathrm{2}}…
Question Number 30761 by abdo imad last updated on 25/Feb/18 $${find}\:\int_{\mathrm{0}} ^{\infty} \:\:{x}^{\mathrm{2}{n}+\mathrm{1}} \:{e}^{−{x}^{\mathrm{2}} } {dx}\:\:\:{with}\:{n}\:{from}\:{N}. \\ $$ Commented by abdo imad last updated on…
Question Number 30760 by abdo imad last updated on 25/Feb/18 $${find}\:\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\left({lnx}\right)^{{n}} \:{dx}\:\:{with}\:{n}\:{fromN} \\ $$ Commented by abdo imad last updated on 27/Feb/18…