Menu Close

Category: Integration

evaluate-the-inequality-for-n-2-pi-2-1-n-1-n-1-n-lt-1-n-pi-2-sin-t-1-n-dt-

Question Number 94093 by MAB last updated on 16/May/20 $${evaluate}\:{the}\:{inequality}\:{for}\:{n}\geqslant\mathrm{2} \\ $$$$\left(\frac{\pi}{\mathrm{2}}−\frac{\mathrm{1}}{{n}}\right)\frac{\mathrm{1}}{\:\sqrt[{{n}}]{{n}}}<\int_{\frac{\mathrm{1}}{{n}}} ^{\frac{\pi}{\mathrm{2}}} \sqrt[{{n}}]{{sin}\left({t}\right)}{dt} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

cotx-dx-

Question Number 94084 by seedhamaieng@gmail.com last updated on 16/May/20 $$\int\sqrt{\mathrm{cot}{x}}{dx}\: \\ $$ Commented by Kunal12588 last updated on 16/May/20 $$=\int\sqrt{{tan}\left(\pi/\mathrm{2}−{x}\right)}\:{dx} \\ $$$$=−\int\sqrt{{tan}\:{t}}\:{dt}\:;\:{with}\:{t}={tan}\left(\frac{\pi}{\mathrm{2}}−{x}\right) \\ $$$$\int\sqrt{{tan}\:{x}}\:{dx}\:{is}\:{very}\:{popular}\:{integral},\:{its}\:{already} \\…

Question-159612

Question Number 159612 by cortano last updated on 19/Nov/21 Answered by Ar Brandon last updated on 19/Nov/21 $${I}=\int\frac{\sqrt{\mathrm{2}+\sqrt[{\mathrm{3}}]{{x}}}}{\:\sqrt[{\mathrm{3}}]{{x}}}{dx},\:{x}={u}^{\mathrm{3}} \Rightarrow{dx}=\mathrm{3}{u}^{\mathrm{2}} {du} \\ $$$$\:\:\:=\mathrm{3}\int\frac{\sqrt{\mathrm{2}+{u}}}{{u}}\centerdot{u}^{\mathrm{2}} {du}=\mathrm{3}\int{u}\sqrt{\mathrm{2}+{u}}{du} \\ $$$$\:\:\:=\mathrm{3}\int\left({u}+\mathrm{2}\right)^{\frac{\mathrm{3}}{\mathrm{2}}}…

Question-159597

Question Number 159597 by mathlove last updated on 19/Nov/21 Answered by mr W last updated on 19/Nov/21 $$\left(\frac{\mathrm{sin}^{\mathrm{2014}} \:{x}\:\mathrm{sin}\:\left(\mathrm{2014}{x}\right)}{\mathrm{2014}}\right)' \\ $$$$=\frac{\mathrm{2014}\:\mathrm{sin}^{\mathrm{2013}} \:{x}\:\mathrm{cos}\:{x}\:\mathrm{sin}\:\left(\mathrm{2014}{x}\right)+\mathrm{sin}\:^{\mathrm{2014}} {x}×\mathrm{2014}\:\mathrm{cos}\:\left(\mathrm{2014}{x}\right)}{\mathrm{2014}} \\ $$$$=\mathrm{sin}^{\mathrm{2013}}…