Question Number 28161 by abdo imad last updated on 21/Jan/18 $${find}\:{the}\:{value}\:{of}\:\int\int_{{W}} {ln}\left(\mathrm{1}+{x}+{y}\right){dxdy}\:{with} \\ $$$${W}=\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /\:{x}+{y}\leqslant\mathrm{1}\:{and}\:{x}\geqslant\mathrm{0}\:{and}\:{y}\geqslant\mathrm{0}\right\}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 28159 by abdo imad last updated on 21/Jan/18 $${let}\:{give}\:{D}=\left[\mathrm{0},\frac{\pi}{\mathrm{2}}\right]×\left[\mathrm{0},\frac{\mathrm{1}}{\mathrm{2}}\right]\:\:{find}\:{the}\:{value}\:{of} \\ $$$$\int\int_{{D}} \:\:\:\frac{{dxdy}}{{ycosx}\:+\mathrm{1}}\:\:. \\ $$ Commented by abdo imad last updated on 26/Jan/18 $${let}\:{put}\:\:{I}=\int\int_{{D}}…
Question Number 28158 by abdo imad last updated on 21/Jan/18 $${calculate}\:\int\int_{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \leqslant\mathrm{1}} \:\:\:\frac{{dxdy}}{\mathrm{3}+{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:\:. \\ $$ Answered by ajfour last updated on 21/Jan/18…
Question Number 159226 by cortano last updated on 14/Nov/21 $$\:\Omega\:=\:\int_{\mathrm{0}} ^{\infty} \frac{\sqrt[{\mathrm{6}}]{{x}^{\mathrm{5}} }−\sqrt{{x}}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\:\mathrm{ln}\:{x}}\:{dx}\:=? \\ $$ Answered by mindispower last updated on 14/Nov/21 $$\int_{\mathrm{0}} ^{\infty}…
Question Number 93683 by i jagooll last updated on 14/May/20 $$\int\:\left(\mathrm{t}^{\mathrm{2}} \boldsymbol{\mathrm{i}}\:+\mathrm{cos}\:\mathrm{2t}\boldsymbol{\mathrm{j}}\:+\mathrm{e}^{−\mathrm{t}} \boldsymbol{\mathrm{k}}\right)\:\mathrm{dt}\: \\ $$ Answered by john santu last updated on 14/May/20 $$=\:\frac{\mathrm{1}}{\mathrm{3}}\mathrm{t}^{\mathrm{3}} \:\overset{\rightarrow}…
Question Number 93638 by i jagooll last updated on 14/May/20 $$\int\:\frac{{x}^{\mathrm{4}} +\mathrm{4}{x}^{\mathrm{2}} }{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{4}}}\:{dx}\:?\: \\ $$ Commented by i jagooll last updated on 14/May/20 $$\mathrm{thank}\:\mathrm{you}\:\mathrm{both}\:…
Question Number 93636 by abdomathmax last updated on 14/May/20 $${calcilate}\:{U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sin}\left({nx}\right)}{{e}^{{x}} −\mathrm{1}}{dx} \\ $$$$ \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 93635 by abdomathmax last updated on 14/May/20 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{xsin}\left(\pi{x}\right)}{{x}^{\mathrm{4}} \:+\mathrm{4}}\:{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 93634 by abdomathmax last updated on 14/May/20 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{{x}^{\mathrm{4}} \:+{x}^{\mathrm{2}} \:+\mathrm{1}} \\ $$ Commented by mathmax by abdo last updated on 14/May/20…
Question Number 93632 by abdomathmax last updated on 14/May/20 $${calculate}\:\int_{−\infty} ^{+\infty} \:\frac{{x}^{\mathrm{2}} −\mathrm{3}}{\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$ Commented by abdomathmax last updated on 15/May/20 $${let}\:{I}\:\:=\int_{−\infty}…