Question Number 96195 by mathmax by abdo last updated on 30/May/20 $$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\left(\mathrm{arctan}\left(\frac{\mathrm{1}}{\mathrm{x}}\right)\right)^{\mathrm{2}} \:\mathrm{dx} \\ $$ Answered by mathmax by abdo last updated on…
Question Number 96193 by mathmax by abdo last updated on 30/May/20 $$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\mathrm{ln}\left(\mathrm{cosx}\right)\right)^{\mathrm{2}} \:\mathrm{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 96175 by Fikret last updated on 30/May/20 $$\int\frac{{dx}}{\:\sqrt{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{3}}}=? \\ $$ Commented by bobhans last updated on 30/May/20 $$\int\:\frac{{dx}}{\mathrm{2}\sqrt{{x}^{\mathrm{2}} +{x}+\frac{\mathrm{3}}{\mathrm{4}}}}\:=\:\int\:\frac{{dx}}{\mathrm{2}\sqrt{\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}}} \\ $$$${set}\:{x}+\frac{\mathrm{1}}{\mathrm{2}}\:=\:\sqrt{\frac{\mathrm{1}}{\mathrm{2}}}\:\mathrm{tan}\:{u}\:\Rightarrow\mathrm{tan}\:\mathrm{u}\:=\:\frac{\mathrm{2x}+\mathrm{1}}{\:\sqrt{\mathrm{2}}}…
Question Number 161706 by mnjuly1970 last updated on 21/Dec/21 $$\: \\ $$$$\mathrm{J}\:=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\mathrm{1}−{x}}{\left(\:\mathrm{1}+{x}\:+{x}^{\:\mathrm{2}} +\:{x}^{\:\mathrm{3}} \:\right){ln}\left({x}\right)}\:{dx}=? \\ $$$$ \\ $$ Answered by Ar Brandon last…
Question Number 161703 by cortano last updated on 21/Dec/21 $$\left(\mathrm{1}\right)\int\:\frac{\mathrm{sin}\:{x}−\mathrm{cos}\:{x}}{\:\sqrt{\mathrm{sin}\:\mathrm{2}{x}}}\:{dx} \\ $$$$\left(\mathrm{2}\right)\:\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \mathrm{cos}\:\mathrm{7}{x}\:\mathrm{cos}\:\mathrm{17}{x}\:\mathrm{cos}\:\mathrm{37}{x}\:{dx} \\ $$ Commented by cortano last updated on 21/Dec/21 $$\left(\mathrm{1}\right)\:\Omega\:=\int\:\frac{\mathrm{sin}\:{x}−\mathrm{cos}\:{x}}{\:\sqrt{\mathrm{1}+\mathrm{sin}\:\mathrm{2}{x}−\mathrm{1}}}\:{dx} \\…
Question Number 96161 by bemath last updated on 30/May/20 $$\underset{\mathrm{1}} {\overset{\mathrm{4}} {\int}}\:\frac{\mathrm{sech}\:^{\mathrm{2}} \left(\sqrt{{x}}\right)+\mathrm{tanh}\:\left(\sqrt{{x}}\right)}{\:\sqrt{{x}}\:}\:{dx}\:? \\ $$ Commented by bemath last updated on 30/May/20 $$\mathrm{thanks} \\ $$…
Question Number 96128 by bemath last updated on 30/May/20 $${find}\:\int\int_{{R}} \:\left({x}+\mathrm{2}{y}\right)^{\mathrm{2}} \:{dxdy}\:{in}\:{R}=\left[−\mathrm{1},\mathrm{2}\right]\:×\left[\mathrm{0},\mathrm{2}\right]\: \\ $$ Answered by john santu last updated on 30/May/20 $$\underset{\mathrm{0}} {\overset{\mathrm{2}} {\int}}\:\underset{−\mathrm{1}}…
Question Number 161660 by amin96 last updated on 20/Dec/21 $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \boldsymbol{{ln}}\left(\mathrm{1}+\sqrt{\mathrm{2}}\boldsymbol{{cos}}\left(\boldsymbol{{x}}\right)\right)\boldsymbol{{dx}}=??? \\ $$ Answered by mindispower last updated on 21/Dec/21 $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}{r}} \\ $$$${ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\boldsymbol{{cos}}\left(\frac{\boldsymbol{\pi}}{\mathrm{4}}−{x}\right)\right){dx}\mathrm{3}…
Question Number 161656 by amin96 last updated on 20/Dec/21 $$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{{xln}}\left(\mathrm{1}+\boldsymbol{{x}}\right)}{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }\boldsymbol{{dx}} \\ $$ Commented by Ar Brandon last updated on 21/Dec/21 Commented by…
Question Number 30585 by abdo imad last updated on 23/Feb/18 $${find}\:\:{F}_{{n}} \left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{x}^{{n}} }{{e}^{{x}+{n}} \:+\mathrm{1}}{dx}\:. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com