Menu Close

Category: Integration

Use-the-trapezoidal-rule-with-5-ordinates-to-evaluate-0-0-8-e-x-2-dx-

Question Number 27951 by tawa tawa last updated on 17/Jan/18 $$\mathrm{Use}\:\mathrm{the}\:\mathrm{trapezoidal}\:\mathrm{rule}\:\mathrm{with}\:\mathrm{5}\:\mathrm{ordinates}\:\mathrm{to}\:\mathrm{evaluate}\:\:\:\int_{\:\mathrm{0}} ^{\:\mathrm{0}.\mathrm{8}} \:\mathrm{e}^{\mathrm{x}^{\mathrm{2}} } \:\:\mathrm{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

t-2-1-t-2-2-dx-

Question Number 93484 by mashallah last updated on 13/May/20 $$\int\mathrm{t}^{\mathrm{2}} /\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)^{\mathrm{2}} \mathrm{dx}= \\ $$ Commented by prakash jain last updated on 13/May/20 $$\mathrm{function}\:\mathrm{is}\:\mathrm{in}\:{t}\:\mathrm{so}\:\mathrm{constant}\:\mathrm{wrt}\:{x} \\…

log-x-x-2-dx-

Question Number 93481 by mashallah last updated on 13/May/20 $$\int\left(\mathrm{log}\:\mathrm{x}/\mathrm{x}^{\mathrm{2}} \right)\mathrm{dx}= \\ $$ Commented by abdomathmax last updated on 15/May/20 $${I}\:=\int\:\frac{{lnx}}{{x}^{\mathrm{2}} }{dx}\:\:{by}\:{parts} \\ $$$${I}\:=−\frac{{lnx}}{{x}}\:−\int\:\left(−\frac{\mathrm{1}}{{x}}\right)×\frac{{dx}}{{x}}\:=−\frac{{lnx}}{{x}}\:+\int\:\frac{{dx}}{{x}^{\mathrm{2}} }…

1-1-x-2-2-

Question Number 93473 by mashallah last updated on 13/May/20 $$\int\mathrm{1}/\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{2}} \\ $$ Commented by abdomathmax last updated on 15/May/20 $${A}\:=\int\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:\:{we}\:{do}\:{the}\:{changement}\:{x}\:={tant}\:\Rightarrow \\ $$$${A}\:\:=\int\:\:\:\frac{\left(\mathrm{1}+{tan}^{\mathrm{2}}…

1-1-x2-

Question Number 93471 by mashallah last updated on 13/May/20 $$\int\mathrm{1}/\mathrm{1}+\mathrm{x2} \\ $$ Answered by Rio Michael last updated on 13/May/20 $$\int\:\frac{\mathrm{1}}{\mathrm{1}\:+\:{x}^{\mathrm{2}} }\:{dx}\:=\:\mathrm{arctan}\:{x}\:+\:{C} \\ $$ Terms…

Question-158973

Question Number 158973 by mnjuly1970 last updated on 11/Nov/21 Answered by qaz last updated on 11/Nov/21 $$\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \frac{\mathrm{x}}{\left(\mathrm{1}+\mathrm{sin}\:\mathrm{x}\right)^{\mathrm{2}} }\mathrm{dx} \\ $$$$=\frac{\pi}{\mathrm{2}}\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \frac{\mathrm{dx}}{\left(\mathrm{1}+\mathrm{cos}\:\mathrm{x}\right)^{\mathrm{2}} }−\int_{\mathrm{0}}…