Question Number 30546 by abdo imad last updated on 23/Feb/18 $${find}\:{I}\:=\:\int_{\mathrm{1}} ^{+\infty} \:\:\frac{\left(−\mathrm{1}\right)^{\left[{x}\right]} }{{x}^{\mathrm{2}} }{dx}\:. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 96083 by john santu last updated on 29/May/20 $$\int\:\frac{\mathrm{e}^{\mathrm{x}} \left(\mathrm{1}+\mathrm{sin}\:\mathrm{x}\right)}{\mathrm{1}+\mathrm{cos}\:\mathrm{x}}\:\mathrm{dx}\: \\ $$ Answered by john santu last updated on 29/May/20 $$\int\:\left(\frac{{e}^{{x}} }{\mathrm{1}+\mathrm{cos}\:{x}}\:+\:\frac{{e}^{{x}} \mathrm{sin}\:{x}}{\mathrm{1}+\mathrm{cos}\:{x}}\right){dx}\:=\:…
Question Number 30544 by abdo imad last updated on 23/Feb/18 $${find}\:{I}=\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{t}}{\mathrm{2}+{sint}}{dt}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 96076 by bobhans last updated on 29/May/20 $$\int\:\mathrm{3x}.\mathrm{2}^{\mathrm{x}} \:\mathrm{dx}\:?\: \\ $$ Answered by i jagooll last updated on 29/May/20 $$\int\:\left(\mathrm{3x}\right)\:\mathrm{d}\left(\frac{\mathrm{2}^{\mathrm{x}} }{\mathrm{ln}\:\mathrm{2}}\right)\:=\: \\ $$$$\frac{\mathrm{3x}.\mathrm{2}^{\mathrm{x}}…
Question Number 30542 by abdo imad last updated on 23/Feb/18 $${prove}\:{that}\:\:\int_{\mathrm{0}} ^{{x}} \:\:{e}^{−{u}^{\mathrm{2}} } {du}=\:{x}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{e}^{−{x}^{\mathrm{2}} {tan}^{\mathrm{2}} {t}} }{{cos}^{\mathrm{2}} {t}}{dt}\:\:. \\ $$$$ \\ $$…
Question Number 161609 by amin96 last updated on 20/Dec/21 $$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{{xln}}\left(\mathrm{1}+\boldsymbol{{x}}^{\mathrm{4}} \right)}{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }\boldsymbol{{dx}}=? \\ $$$$ \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 30527 by abdo imad last updated on 22/Feb/18 $${find}\:\:{I}_{{n},{p}} =\:\int_{\mathrm{0}} ^{\infty} \:\:{x}^{{n}} \:{e}^{−{px}} \:\:\:\:\:{with}\:{n}\:{and}\:{p}\:{from}\:{N}^{\bigstar} \:. \\ $$ Answered by sma3l2996 last updated on…
Question Number 30525 by abdo imad last updated on 22/Feb/18 $${let}\:{I}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{x}} }{\mathrm{1}+{x}^{\mathrm{2}} }\:{give}\:{I}\:{at}\:{form}\:{of}\:{series}\:. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 30521 by abdo imad last updated on 22/Feb/18 $$\left.\mathrm{1}\right)\:{find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)^{{n}} \:{cos}\left({narctanx}\right){dx} \\ $$$$\left.\mathrm{2}\right){find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\sqrt{\mathrm{1}+{x}^{\mathrm{2}} \:}\right)^{\mathrm{3}} \:{cos}\left(\mathrm{3}\:{arctanx}\right){dx}\:. \\ $$ Commented by…
Question Number 30518 by abdo imad last updated on 22/Feb/18 $${let}\:{a}>\mathrm{0}\:{find}\:\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dx}}{\left({x}+{a}\right)\sqrt{{a}^{\mathrm{2}} \:+{x}^{\mathrm{2}} }}\:. \\ $$ Answered by sma3l2996 last updated on 24/Feb/18 $${f}\left({a}\right)=\int_{\mathrm{0}}…