Question Number 158965 by cortano last updated on 11/Nov/21 $$\:\int\:\frac{\sqrt{\mathrm{1}+{x}}}{\:\sqrt{{x}}\:+\mathrm{1}}\:{dx}\:=? \\ $$ Answered by puissant last updated on 11/Nov/21 $$\Omega=\int\frac{\sqrt{\mathrm{1}+{x}}}{\:\sqrt{{x}}+\mathrm{1}}{dx} \\ $$$${u}=\sqrt{{x}}\:\rightarrow\:{du}=\frac{{dx}}{\mathrm{2}\sqrt{{x}}}\:\rightarrow\:{dx}=\mathrm{2}{udu} \\ $$$$\Rightarrow\:\Omega\:=\:\int\frac{\mathrm{2}{u}\sqrt{{u}^{\mathrm{2}} +\mathrm{1}}}{{u}+\mathrm{1}}{du}\:;\:…
Question Number 93410 by M±th+et+s last updated on 12/May/20 $$\int\frac{\mathrm{1}+{x}^{\mathrm{6}} }{\mathrm{1}+{x}^{\mathrm{8}} }{dx} \\ $$ Commented by prakash jain last updated on 13/May/20 $$\mathrm{Were}\:\mathrm{you}\:\mathrm{able}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{this}.\:\mathrm{My}\: \\ $$$$\mathrm{method}\:\mathrm{of}\:\mathrm{solving}\:\mathrm{by}\:\mathrm{partial}…
Question Number 27878 by students last updated on 16/Jan/18 Commented by students last updated on 21/Jan/18 $${sir}\:{answer}\:{i}\:{waiting}\:\mathrm{5}\:{to}\:\mathrm{6}\:{dayes}\: \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 27853 by Poojadarshini94 last updated on 15/Jan/18 Commented by abdo imad last updated on 17/Jan/18 $${let}\:{put}\:{f}\left({x}\right)=\:{ln}\left({x}+\sqrt{\left.{x}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)}\:\:{we}\:{have}\:\right. \\ $$$${f}'\left({x}\right)=^{\:\:} \:\:\frac{\mathrm{1}\:+\frac{\mathrm{2}{x}}{\mathrm{2}\sqrt{{x}^{\mathrm{2}} +{a}^{\mathrm{2}} }}}{{x}+\sqrt{{x}^{\mathrm{2}}…
Question Number 158922 by gsk2684 last updated on 10/Nov/21 $$\int{e}^{\mathrm{sec}\:{x}} \mathrm{sec}\:^{\mathrm{3}} {x}\left(\mathrm{sin}\:^{\mathrm{2}} {x}+\mathrm{cos}\:{x}+\mathrm{sin}\:{x}+\mathrm{sin}\:{x}\:\mathrm{cos}\:{x}\right){dx}=? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 158913 by amin96 last updated on 10/Nov/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 158903 by mnjuly1970 last updated on 10/Nov/21 $$ \\ $$$$\:\:\:#\:{solve}\:# \\ $$$$\:\:\:\:\Phi:=\int_{−\infty} ^{\:\infty} \frac{\:{xsin}\left({x}\right)}{\left(\:\mathrm{2}+\:{x}\:+{x}^{\:\mathrm{2}} \right)^{\:\mathrm{2}} }\:{dx}\:=? \\ $$$$−−−−−−−− \\ $$ Terms of Service…
Question Number 158902 by mnjuly1970 last updated on 10/Nov/21 $$ \\ $$$$\:\:\:\:\:\:{nice}\:\:{mathematics} \\ $$$$\:\:\:\:\:\:\:#\:{calculate}\:# \\ $$$$\:\:\:\:\:\:\:\:\Omega\::=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\:\mathrm{1}}{\left(\:\mathrm{6}{n}\:+\:\mathrm{1}\:\right)^{\:\mathrm{3}} }\:=\:? \\ $$$$\:\:\:\:\:\:−−−−−−−−−−−− \\ $$$$ \\ $$…
Question Number 27828 by abdo imad last updated on 15/Jan/18 $${find}\:{the}\:{value}\:{of}\:\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{{tanx}}{dx}\:. \\ $$ Commented by NECx last updated on 15/Jan/18 $${thanks}\:{for}\:{this}\:{question}. \\ $$$${I}\:{really}\:{need}\:{the}\:{answer}.…
Question Number 27815 by goswamisubhabrata007@gmail.com last updated on 15/Jan/18 $$\int\frac{\mathrm{cos}\:\mathrm{x}−\mathrm{cos}\:\mathrm{2x}}{\mathrm{1}−\mathrm{cos}\:\mathrm{x}}\mathrm{dx} \\ $$ Answered by ajfour last updated on 15/Jan/18 $$\int\frac{\mathrm{cos}\:{x}−\mathrm{2cos}\:^{\mathrm{2}} {x}+\mathrm{1}}{\mathrm{1}−\mathrm{cos}\:{x}}\:{dx} \\ $$$$=\int\frac{\left(\mathrm{2cos}\:{x}−\mathrm{2cos}\:^{\mathrm{2}} {x}+\mathrm{1}−\mathrm{cos}\:{x}\right)}{\left(\mathrm{1}−\mathrm{cos}\:{x}\right)}\:{dx} \\…