Menu Close

Category: Integration

f-function-2-derivable-prove-that-L-f-pL-f-f-o-and-L-f-p-2-L-f-pf-0-f-0-2-let-f-t-tsin-wt-find-L-f-

Question Number 30477 by abdo imad last updated on 22/Feb/18 $${f}\:{function}\:\mathrm{2}\left(×\right)\:{derivable}\:{prove}\:{that} \\ $$$${L}\left({f}^{'} \right)=\:{pL}\left({f}\right)\:−{f}\left({o}\right)\:{and}\:{L}\left({f}^{''} \right)={p}^{\mathrm{2}} {L}\left({f}\right)−{pf}\left(\mathrm{0}\right)−{f}^{'} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:{let}\:{f}\left({t}\right)={tsin}\left({wt}\right)\:{find}\:{L}\left({f}\right). \\ $$ Terms of Service Privacy…

let-give-f-n-x-1-n-n-sin-xt-t-e-t-dt-1-find-lim-n-f-n-x-2-find-another-form-of-f-n-x-by-calculating-f-n-x-

Question Number 30475 by abdo imad last updated on 22/Feb/18 $${let}\:{give}\:{f}_{{n}} \left({x}\right)=\:\int_{\frac{\mathrm{1}}{{n}}} ^{{n}} \:\frac{{sin}\left({xt}\right)}{{t}}\:{e}^{−{t}} \:{dt} \\ $$$$\left.\mathrm{1}\right){find}\:{lim}_{{n}\rightarrow\infty} {f}_{{n}} \left({x}\right) \\ $$$$\left.\mathrm{2}\right){find}\:{another}\:{form}\:{of}\:{f}_{{n}} \left({x}\right)\:{by}\:{calculating}\:{f}_{{n}} ^{'} \left({x}\right). \\…

find-L-cos-2-x-and-L-sin-2-x-L-is-laplace-transform-

Question Number 30476 by abdo imad last updated on 22/Feb/18 $${find}\:{L}\left({cos}^{\mathrm{2}} {x}\right)\:{and}\:{L}\left({sin}^{\mathrm{2}} {x}\right)\:{L}\:{is}\:{laplace}\:{transform}. \\ $$ Answered by sma3l2996 last updated on 24/Feb/18 $${L}\left({cos}^{\mathrm{2}} {x}\right)={L}\left(\frac{{cos}\left(\mathrm{2}{x}\right)+\mathrm{1}}{\mathrm{2}}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left({L}\left({cos}\left(\mathrm{2}{x}\right)\right)+{L}\left(\mathrm{1}\right)\right) \\…

prove-that-1-e-0-1-e-x-x-2-dx-1-

Question Number 30442 by abdo imad last updated on 22/Feb/18 $${prove}\:{that}\:\:\:\frac{\mathrm{1}}{{e}}\:\leqslant\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−\left({x}−\left[{x}\right]\right)^{\mathrm{2}} } \:{dx}\leqslant\mathrm{1}. \\ $$ Commented by alex041103 last updated on 22/Feb/18 $${You}\:{can}\:{see}\:{that}\:{if}\:{x}\in\left[\mathrm{0},\mathrm{1}\right),\:{then}…