Menu Close

Category: Integration

Evaluate-the-following-integrals-using-integration-By-Parts-1-pi-4-pi-2-xcsc-2-xdx-2-1-3-arctan-1-x-dx-

Question Number 158839 by EbrimaDanjo last updated on 09/Nov/21 $$\mathrm{Evaluate}\:\mathrm{the}\:\mathrm{following}\:\mathrm{integrals}\:\mathrm{using} \\ $$$$\mathrm{integration}\:\boldsymbol{\mathrm{By}}\:\boldsymbol{\mathrm{Parts}} \\ $$$$\mathrm{1}.\:\int_{\frac{\pi\:}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{2}}} {xcsc}^{\mathrm{2}} {xdx} \\ $$$$ \\ $$$$\mathrm{2}.\:\int_{\mathrm{1}} ^{\sqrt{\mathrm{3}}} {arctan}\left(\frac{\mathrm{1}}{{x}}\right){dx} \\ $$…

n-0-arctan-1-n-2n-1-

Question Number 158822 by qaz last updated on 09/Nov/21 $$\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\mathrm{arctan}\:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{2n}+\mathrm{1}}=? \\ $$ Answered by mindispower last updated on 09/Nov/21 $$\underset{{n}\geqslant\mathrm{0}} {\sum}\left\{{arctan}\left(\frac{\mathrm{1}}{\mathrm{4}{n}+\mathrm{1}}\right)−{arctan}\left(\frac{\mathrm{1}}{\mathrm{4}{n}+\mathrm{3}}\right)\right\} \\…

0-1-ln-x-dx-

Question Number 93248 by i jagooll last updated on 12/May/20 $$\int\underset{\mathrm{0}} {\overset{\mathrm{1}} {\:}}\:\mathrm{ln}\left(\mathrm{x}\right)\:\mathrm{dx}\: \\ $$ Commented by abdomathmax last updated on 12/May/20 $$\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({x}\right){dx}\:={lim}_{{a}\rightarrow\mathrm{0}^{+}…

1-calculate-0-1-0-pi-2-dxdy-1-xtany-2-2-find-the-value-of-0-pi-2-t-tant-dt-

Question Number 27693 by abdo imad last updated on 12/Jan/18 $$\left.\mathrm{1}\right)\:{calculate}\:\:\int\int_{\left.\right]\left.\mathrm{0}\left.,\left.\mathrm{1}\right]×\right]\mathrm{0},\frac{\pi}{\mathrm{2}}\right]} \:\:\:\frac{{dxdy}}{\mathrm{1}+\left({xtany}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{t}}{{tant}}{dt}\:. \\ $$ Commented by abdo imad last updated…

let-give-A-0-y-x-1-dxdxy-1-x-2-1-y-2-and-B-0-pi-4-ln-2cos-2-2cos-2-d-calculate-A-and-prove-that-B-A-

Question Number 27691 by abdo imad last updated on 12/Jan/18 $${let}\:{give}\:\:{A}=\int\int_{\mathrm{0}\leqslant{y}\leqslant{x}\leqslant\mathrm{1}} \:\:\:\:\:\:\frac{{dxdxy}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{y}^{\mathrm{2}} \right)}\:\:{and} \\ $$$${B}=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{{ln}\left(\mathrm{2}{cos}^{\mathrm{2}} \theta\right)}{\mathrm{2}{cos}\left(\mathrm{2}\theta\right)}{d}\theta\:\:{calculate}\:{A}\:{and}\:{prove}\:{that}\:{B}={A}. \\ $$ Commented by abdo imad…

Question-93225

Question Number 93225 by Ajao yinka last updated on 11/May/20 Commented by prakash jain last updated on 12/May/20 $$\mathrm{1}+{x}+…+{x}^{{n}} \:\mathrm{has}\:\mathrm{no}\:\mathrm{root}\:\mathrm{in}\:\mathbb{R}\:\mathrm{for}\:{n}\:\mathrm{even} \\ $$$$\int_{−\infty} ^{\infty} {x}^{{n}} \delta\left(\mathrm{1}+{x}+…+{x}^{{n}}…

find-I-D-ln-1-x-y-dxdy-with-D-x-y-R-2-x-y-1-and-x-0-and-y-0-

Question Number 27690 by abdo imad last updated on 12/Jan/18 $${find}\:\:\:{I}=\:\:\int\int_{{D}} {ln}\left(\mathrm{1}+{x}+{y}\right){dxdy}\:\:{with} \\ $$$${D}=\:\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} \:\:\:/\:\:{x}+{y}\leqslant\mathrm{1}\:{and}\:{x}\geqslant\mathrm{0}\:{and}\:{y}\geqslant\mathrm{0}\:\right\}. \\ $$ Commented by abdo imad last updated on 14/Jan/18…