Question Number 161233 by cortano last updated on 14/Dec/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 161229 by cortano last updated on 14/Dec/21 $$\:{Given}\:{f}\left({x}\right)=\:\begin{cases}{\mathrm{1}−\mid{x}\mid\:;\:{x}\leqslant\mathrm{1}}\\{\mid{x}\mid−\mathrm{1}\:;\:{x}>\mathrm{1}}\end{cases} \\ $$$$\:{find}\:\int_{−\mathrm{3}} ^{\:\mathrm{8}} \left[{f}\left({x}−\mathrm{1}\right)+{f}\left({x}+\mathrm{1}\right)\right]\:{dx}.\: \\ $$ Answered by mr W last updated on 14/Dec/21 Commented…
Question Number 95692 by mathmax by abdo last updated on 27/May/20 $$\mathrm{calculate}\:\:\int_{−\infty} ^{\infty} \:\:\frac{\mathrm{xsin}\left(\mathrm{2x}\right)}{\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }\mathrm{dx} \\ $$ Answered by mathmax by abdo last updated…
Question Number 95690 by mathmax by abdo last updated on 27/May/20 $$\mathrm{calculate}\:\mathrm{I}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{cos}^{\mathrm{3}} \left(\mathrm{x}\right)\mathrm{sh}^{\mathrm{2}} \left(\mathrm{x}\right)\mathrm{dx}\:\mathrm{and}\:\mathrm{J}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{3}}} \:\mathrm{sin}^{\mathrm{3}} \mathrm{x}\:\mathrm{ch}^{\mathrm{2}} \mathrm{x} \\ $$ Terms of Service…
Question Number 161212 by cortano last updated on 14/Dec/21 $$\:\:\int_{\:\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \:\frac{{x}\:\mathrm{sin}\:{x}\:\mathrm{cos}\:{x}}{\mathrm{cos}\:^{\mathrm{4}} {x}\:+\mathrm{sin}\:^{\mathrm{4}} {x}}\:{dx}\:=? \\ $$ Commented by puissant last updated on 15/Dec/21 Commented by…
Question Number 95691 by mathmax by abdo last updated on 27/May/20 $$\mathrm{calculate}\:\int\:\:\frac{\mathrm{x}+\mathrm{1}}{\:\sqrt{\left(\mathrm{x}+\mathrm{3}\right)\left(\mathrm{2}−\mathrm{x}\right)}}\mathrm{dx} \\ $$ Commented by Tony Lin last updated on 27/May/20 $$\int\frac{{x}+\mathrm{1}}{\:\sqrt{\left({x}+\mathrm{3}\right)\left(\mathrm{2}−{x}\right)}}{dx} \\ $$$$=\int\frac{{x}+\mathrm{1}}{\:\sqrt{−{x}^{\mathrm{2}}…
Question Number 95673 by Rio Michael last updated on 26/May/20 $$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt{\mathrm{3}\:+\:\mathrm{4}{x}−\mathrm{4}{x}^{\mathrm{2}} }\:}\:{dx}\:=\:? \\ $$ Commented by Tony Lin last updated on 26/May/20 $$\int_{\mathrm{0}}…
Question Number 95653 by rb222 last updated on 26/May/20 $${arc}\:{length}\:\mathrm{3}{x}^{\frac{\mathrm{3}}{\mathrm{2}}} −\mathrm{1}\: \\ $$$${from}\:{x}=\mathrm{0}\:{and}\:{x}=\mathrm{1}\: \\ $$$${help}\:{please}\:{sir} \\ $$ Answered by john santu last updated on 26/May/20…
Question Number 95650 by M±th+et+s last updated on 26/May/20 $$\int_{\mathrm{0}} ^{\mathrm{1}} \left\{\left(−\mathrm{1}\right)^{\lfloor\frac{\mathrm{1}}{{x}}\rfloor} \frac{\mathrm{1}}{{x}}\right\}{dx} \\ $$$$\left\{..\right\}{is}\:{fractional}\:{part} \\ $$$$\lfloor..\rfloor\:{is}\:{floor}\:{function} \\ $$ Answered by mathmax by abdo last…
Question Number 161176 by mnjuly1970 last updated on 13/Dec/21 $$ \\ $$$$\:\:\:\:\:\:{calculate}\: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\Theta\::=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:\left(−\mathrm{1}\:\right)^{\:{n}−\mathrm{1}} }{{n}\:\left(\:{n}\:+\:\frac{\mathrm{1}}{\mathrm{3}}\:\right)}\:=?\:\:\:\:\:\:\:\:\:\:\:\:\blacksquare\:\:{m}.{n} \\ $$$$\:\:\:\:\:\:\:−−−−−−−−−−−−− \\ $$$$ \\ $$…