Menu Close

Category: Integration

let-give-I-x-0-pi-2-dt-sin-2-t-x-2-cos-2-t-and-J-x-0-pi-2-cost-sin-2-t-x-2-cos-2-t-dt-cslculate-lim-x-0-I-x-J-x-and-prove-that-I-x-x-0-lnx-2ln2-

Question Number 28610 by abdo imad last updated on 27/Jan/18 letgiveI(x)=0π2dtsin2t+x2cos2tand$${J}\left({x}\right)=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{cost}}{\:\sqrt{{sin}^{\mathrm{2}} {t}\:+{x}^{\mathrm{2}} {cos}^{\mathrm{2}} {t}}}{dt}\:{cslculate}\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \left({I}\left({x}\right)−{J}\left({x}\right)\right)…

dx-x-1-x-2-2-

Question Number 94143 by john santu last updated on 17/May/20 dx(x+1+x2)2= Commented by abdomathmax last updated on 17/May/20 $${I}\:=\int\:\:\frac{{dx}}{\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)^{\mathrm{2}} }\:{we}\:{do}\:{the}\:{chsngement}\:{x}\:={sh}\left({t}\right)…

cot-1-x-dx-

Question Number 94119 by i jagooll last updated on 17/May/20 cot1(x)dx Commented by i jagooll last updated on 17/May/20 $${u}\:=\:\mathrm{cot}^{−\mathrm{1}} \left(\sqrt{{x}}\right)\:\Rightarrow\:{du}\:=\:\frac{{dx}}{\mathrm{2}\sqrt{{x}}\:\left(\mathrm{1}−{x}\right)} \