Menu Close

Category: Integration

prove-that-1-I-0-pi-2-sin-x-tan-x-sin-x-dx-pi-2-2-J-0-pi-2-sin-x-tan-x-sin-x-dx-1-e-1-2-pi-

Question Number 158590 by mnjuly1970 last updated on 06/Nov/21 $$ \\ $$$$\:\:\:{prove}\:{that}\: \\ $$$$\mathrm{1}.\:\mathrm{I}=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{\:{sin}\left(\:{x}+{tan}\left({x}\right)\right)}{{sin}\left({x}\right)}{dx}\:=\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{2}.\:\mathrm{J}\:=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{{sin}\left({x}−{tan}\left({x}\right)\right)}{{sin}\left({x}\right)}{dx}=\left(\frac{\mathrm{1}}{{e}}\:−\frac{\mathrm{1}}{\mathrm{2}}\right)\pi \\ $$$$ \\ $$ Answered…

sin-1-x-2-dx-

Question Number 93045 by john santu last updated on 10/May/20 $$\int\:\mathrm{sin}^{−\mathrm{1}} \left(\sqrt{\frac{{x}}{\mathrm{2}}}\right)\:{dx}\: \\ $$ Commented by mathmax by abdo last updated on 10/May/20 $${I}\:=\int\:\:{arcsin}\left(\sqrt{\frac{{x}}{\mathrm{2}}}\right){dx}\:\:\:\:{changement}\:\sqrt{\frac{{x}}{\mathrm{2}}}={t}\:{give}\:\frac{{x}}{\mathrm{2}}={t}^{\mathrm{2}} \:\Rightarrow{x}=\mathrm{2}{t}^{\mathrm{2}}…

let-give-f-x-0-1-t-e-1-ix-t-dt-calculate-f-x-prove-that-R-x-i-2-f-x-2-then-find-0-e-t-2-dt-

Question Number 27496 by abdo imad last updated on 07/Jan/18 $${let}\:{give}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\propto} \:\:\frac{\mathrm{1}}{\:\sqrt{{t}}}\:{e}^{−\left(\mathrm{1}+{ix}\right){t}} {dt} \\ $$$${calculate}\:{f}^{'} \left({x}\right)\:{prove}\:{that}\:\exists\lambda\in{R}/\left({x}+{i}\right)^{\mathrm{2}} \:\left({f}\left({x}\right)\right)^{\mathrm{2}} =\:\lambda \\ $$$${then}\:{find}\:\:\int_{\mathrm{0}} ^{\propto} \:\:{e}^{−{t}^{\mathrm{2}} } {dt}\:.…

find-and-from-R-0-pi-t-2-t-cos-nt-dt-1-n-2-for-all-number-n-from-N-then-find-n-1-1-n-2-

Question Number 27495 by abdo imad last updated on 07/Jan/18 $${find}\:\alpha\:{and}\:\beta\:{from}\:{R}\:/\int_{\mathrm{0}} ^{\pi} \left(\alpha{t}^{\mathrm{2}} +\beta{t}\right){cos}\left({nt}\right){dt}=\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} } \\ $$$${for}\:{all}\:{number}\:{n}\:{from}\:{N}^{\ast\:} \:{then}\:{find} \\ $$$$\sum_{{n}=\mathrm{1}} ^{\propto} \:\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:. \\ $$…